Какие добавки применяют в портландцементе при помоле клинкера


5. Портландцемент

Определение и классификация. Портландцементом называют гидравлическое вяжущее вещество, получаемое путем тонкого помола портландцементного клинкера с добавкой гипса. Двуводный гипс в количестве 1,5 … 3,5% вводят для регулирования сроков схватывания портландцемента.

Портландцементный клинкер – продукт обжига до спекания сырьевой тонкодисперсной однородной смеси, состоящей преимущественно из известняка и глины. Такой состав сырья обеспечивает преобладание в клинкере высокоосновных силикатов кальция.

Различают следующие основные разновидности портландцемента:

1) Бездобавочный – введение активных минеральных добавок не допускается, получают помолом лишь портландцементного клинкера с добавкой гипса. Бездобавочный портландцемент имеет в сокращенном обозначении индекс Д0.

2) Портландцемент с активными минеральными добавками. Так называют вяжущие, получаемые совместным помолом портландцементного клинкера и активной минеральной добавки, либо их смешиванием после раздельного измельчения. В качестве подобных добавок используют горные породы (диатомит, трепел, опока, вулканический пепел, пемза и т.д.) и твердые или пылеобразные отходы промышленности (доменные шлаки, нефелиновый шлам, золы уноса ТЭЦ), состоящие преимущественно из аморфного кремнезема.

Ввод этих добавок позволяет значительно снизить себестоимость производимого портландцемента при несущественных потере марочной прочности и замедлении сроков схватывания. Кроме этого, аморфный кремнезем, составляющий основу активных минеральных добавок, легко вступает во взаимодействие с гидроксидом кальция, получающимся при гидратации портландцемента, с образованием труднорастворимых гидросиликатов кальция. Последние, в отличие от Са(ОН)2, не вымываются из цементного камня, повышая водостойкость продукта гидратации.

Портландцемент с активными минеральными добавками подразделяется на два вида. В первый (индекс в обозначении Д5) все виды минеральных добавок могут вводится в количестве до 5%. Во второй вид (Д20) допускается вводить до 10% добавок осадочного происхождения и до 20% прочих активных добавок. Выпускаются следующие марки портландцемента с минеральными добавками – М400, М500, М550, М600.

3) Шлакопортландцемент (ШПЦ). К этой разновидности относят гидравлическое вяжущее вещество, которое получают совместным помолом портландцементного клинкера и доменного гранулированного шлака с добавлением гипса. Шлакопортландцемент можно изготавливать также и путем смешивания указанных компонентов уже после их раздельного измельчения. Содержание шлака в таком вяжущем составляет от 20 до 80 % по массе цемента.

Содержание в шлаке аморфного кремнезема придает вяжущему те же свойства, что и активные минеральные добавки, однако, присутствие в нем свободной извести приводит к образованию в продуктах гидратации повышенного количества низкоосновных гидросиликатов кальция. Производится шлакопортландцемент марок М300, М400 и М500.

Шлакопортландцемент имеет более низкую по сравнению с обычным портландцементом стоимость – он дешевле примерно на 15…20%. Помимо этого, шлакопортландцемент проявляет большую активность при тепловлажностной обработке (t = 80…95 °С). Эта разновидность вяжущего также характеризуется замедленным набором прочности в начальные сроки твердения, однако, в более отдаленные сроки прочность нарастает, и через 2…3 месяца уже превосходит прочность портландцемента той же марки. Помимо этого, шлакопортландцемент характеризуется большей жаро- и водо- и сульфатостойкостью, чем у обычного портландцемента.

Недостатком шлакопортландцемента является пониженная морозо- и атмосферостойкость, что ограничивает применение вяжущего в условиях попеременного замораживания и оттаивания, а также увлажнения и высушивания.

4) Пуццолановый портландцемент (ППЦ). Это гидравлическое вяжущее вещество получают совместным помолом портландцементного клинкера, гипса и активной минеральной добавки в количестве 21…30 % или тщательным смешиванием этих же компонентов, измельченных раздельно. Учитывая повышенное количество активной минеральной добавки, к портландцементному клинкеру предъявляется требование в части содержания трехкальциевого алюмината – не более 8 %.

Выпускают пуццолановый портландцемент марок М300 и М400. Его особенностью является замедленный набор прочности в ранние сроки твердения по сравнению с обычным портландцементом. Однако, при хранении во влажных условиях в течение 3…6 месяцев бетоны на пуццолановом портландцементе сравниваются по прочностным показателям с бетонами на портландцементе. Ввиду пониженной активности гидратации, пуццолановый портландцемент выделяет меньшее количество теплоты, что позволяет использовать его при бетонировании массивных конструкций, где критично развитие чрезмерных температурных деформаций.

Бетоны на ППЦ плохо набирают прочность при пониженных температурах, при +10 °С твердение практически прекращается. Напротив, при повышенных температурах и во влажных условиях интенсивность набора прочности выше, чем у бетонов на обычных портландцементах. Учитывая это, пуццолановые портландцементы целесообразно применять при производстве изделий, подвергаемых тепловлажностной обработке в пропарочных камерах или автоклавах.

Бетоны на пуццолановом портландцементе имеют повышенную водостойкость и сульфатостойкость и пониженную морозостойкость, что определяет область их применения. Их используют для изготовления подводных и подземных конструкций, подвергающихся воздействию мягких и сульфатных вод; ППЦ не рекомендуется использовать в условиях попеременного замораживания и оттаивания.

Сырьевые материалы. Основными сырьевыми материалами при производстве портландцементного клинкера являются кальцитсодержащие и глинистые породы. Содержание кальцитсодержащего компонента в сырьевой смеси должно составлять 75…80 %; глинистых пород – 20…25 %.

В качестве кальцитсодержащего компонента могут быть использованы как осадочные горные породы (известняк, мел, мергель и т.д.), так и побочные продукты производств других отраслей (доменные шлаки, нефелиновый шлам и т.д.).

Известняк – порода осадочного происхождения с содержанием кальцита CаСО3 не менее 50 %. В качестве примесей может содержать кремнезем, глину, оксиды железа, доломит и др. Существуют следующие разновидности известняков, отличающиеся прочностью сцепления кристаллов: зернисто-кристаллический известняк (мрамор), плотный известняк, землисто-рыхлый известняк (мел), известковый туф, известняк-ракушечник. Для производства портландцемента наиболее пригодны известняки с невысоким пределом прочности при сжатии, что позволяет сократить энергозатраты при помоле сырья.

Мел – кальцитсодержащая осадочная порода со слабо сцементированными частицами. Почти целиком состоит из порошкообразного кальцита. Содержание кальцита CаСО3 в меле не менее 96…98 %. Прочность при сжатии мела составляет 0,5…15 МПа. Структура мела позволяет проводить измельчение без предварительного дробления, что существенно снижает стоимость производства портландцемента.

Мергель – осадочная горная порода, состоящая из смеси мельчайших зерен кальцита (50…80 %) и глинисто-песчаных частиц (20…50 %) с примесями доломита, кварцевого песка, полевого шпата и др. Мергель называют натуральным, если соотношение основных компонентов соответствует требуемому для сырьевой смеси. Такие мергели являются особо ценным сырьем для производства портландцементного клинкера.

Доменные шлаки – силикатные и алюмосиликатные расплавы, образующиеся в доменных печах при выплавке чугуна. Химический состав доменных шлаков (SiO2 – 36…40 %; CaO – 42…44 %; Al2O3 – 5…15 %) позволяет замещать ими глинистую и часть кальцийсодержащей составляющей сырьевой смеси.

Нефелиновый шлам – отход переработки апатитовых пород в глинозем, поташ, соду. В основном состоит из минерала белита 2CaO·SiO2. При использовании шлама в состав сырьевой смеси вводят корректирующие добавки – глиноземистую и железистую. Нефелиновый шлам имеет повышенное содержание щелочей, что является его недостатком.

При производстве портландцементного клинкера также используются различные виды глинистых пород: глины, суглинки, лесс и т.д.

Глины – тонкодисперсные горные породы, образующиеся в результате выветривания и глубокого химического преобразования полевошпатных пород. В процессе преобразования образуются различные минералы: монтмориллонит, каолинит и другие гидроалюмосиликаты. Помимо этого в глине присутствуют крупные частицы неразложившихся полевого шпата и слюд, зерна кварцевого песка. Эти включения труднее всего вступают в реакции при обжиге, поэтому количество крупных фракций размером более 0,2 мм не должно превышать 10 %. В небольших количествах имеются СаО и MgO в виде углекислых солей. Примеси в виде Na2O, K2O и MgO нежелательны, их содержание в глине, используемой в качестве сырья при производстве портландцементного клинкера, должно быть минимально. В остальном химический состав глин характеризуется наличием следующих оксидов: SiO2 – 70…80 %; Al2O3 – 5…15 %; Fe2O3 – 3…10 %.

Суглинок – глина, содержащая повышенное количество частиц более крупных, чем глинистые – песчаных и пылеватых.

Лесс – тонкозернистая рыхлая горная порода, состоящая из пылевидных частиц кварца, полевого шпата, глинистых минералов и других силикатов. Помимо этого в лессах содержится значительное количество карбоната кальция.

Минералогический состав. Применяемые для производства портландцементного клинкера сырьевые материалы обеспечивают преобладание в нем высокоосновных силикатов кальция. Помимо этого, при взаимодействии с оксидами Al2O3 и Fe2O3 образуются отдельные группы минералов. Каждый из клинкерных минералов имеет свои специфические свойства.

Трехкальциевый силикат (алит) характеризуется химической формулой 3CaO·SiO2 (сокращенная запись C3S). Содержание его в портландцементе составляет 40…65 %. Являясь химически активным минералом, оказывает решающее влияние на скорость твердения цемента. Алит быстро набирает прочность, образуя довольно плотный продукт гидратации. При взаимодействии с водой выделяет большое количество тепла.

Двухкальциевый силикат (белит) имеет химическую формулу 2CaO·SiO2 (сокращенно C2S). По химической активности заметно уступает алиту. Продукт твердения белита, затворенного водой, в ранние сроки твердения имеет невысокую прочность, при этом выделяется очень мало тепла. Однако, в дальнейшем, при благоприятных условиях, в течение нескольких лет способен увеличивать прочность. Белита в портландцементе может содержаться от 15 до 40 %.

Трехкальциевый алюминат как химическое соединение выражается формулой 3CaO·Al2O3 (С3А). Имеет наибольшую химическую активность среди основных минералов портландцементного клинкера. Процесс его гидратации завершается в первые сутки твердения, при этом выделяется наибольшее количество теплоты. Однако продукт твердения трехкальциевого алюмината имеет низкую долговечность. Содержание в портландцементе С3А колеблется от 2 до 15 %.

Четырехкальциевый алюмоферрит (целит) принят в качестве клинкерного минерала как среднее значение содержащихся в портландцементном клинкере алюмоферритов кальция переменного состава. Химический состав выражается формулой 4CaO·Al2O3·Fe2O3 (С4АF). По химической активности занимает среднее положение между С3А и алитом. Продукт гидратации имеет прочность, меньшую, чем у алита. В портландцементе С4АF может быть от 10 до 20 %.

В зависимости от минералогического состава различают следующие виды портландцемента:

– алитовый: содержание C3S более 60 %, а соотношение C3S:C2S более 4;

– белитовый: содержание C2S превышает 38 % при отношении C3S:C2S менее 1;

– алюминатный, содержащий С3А больше 15 %;

– алюмоферритный (целитовый), в котором С4АF содержится более 18 %.

Технология производства портландцемента. Процесс производства портландцемента весьма сложен и включает в себя следующие операции: добычу и транспортировку сырьевых материалов, приготовление сырьевой смеси, получение клинкера путем обжига сырьевой смеси до спекания, тонкий помол клинкера с гипсом и добавками, расфасовка полученного портландцемента и отгрузка его потребителю.

Добыча сырья производится открытым способом в карьерах. В целях обеспечения экономической эффективности предприятия по производству цемента должны располагаться вблизи карьеров, что минимизирует затраты на транспортировку добытого сырья.

В зависимости от технологии подготовки сырьевой смеси к обжигу различают два основных способа производства портландцемента: сухой и мокрый.

При мокром способе производства сырьевые компоненты предварительно дробят в зависимости от прочности известковой составляющей на валковых, щековых или молотковых дробилках, затем измельчают с добавлением 36…42 % воды в специальных бассейнах-болтушках. В бассейнах отдельно готовятся суспензии глинистого и известкового компонента. Из бассейнов суспензии в заданных соотношениях поступают в шаровые мельницы для тонкого измельчения. Шаровая многокамерная мельница представляет собой полый цилиндр диаметром 1,8…3,5 м, длиной 8…15 м. Внутренняя поверхность цилиндра облицована стальными плитами и разделена поперечными дырчатыми перегородками на камеры. В камерах находятся стальные шары и цилиндры. Мельница вращается на полых цапфах, через которые ее с одной стороны загружают, а с другой разгружают. Суспензия смеси сырьевых материалов проходит через все камеры мельницы, измельчаясь под ударами стальных шаров и цилиндров. Из мельницы выходит однородная масса – шлам. Шлам насосами перекачивают в шламбассейны, где проверяют и, при необходимости, корректируют вводом добавок его состав. Шлам хранится в шламбассейнах, где его постоянно перемешивают, откуда его по мере надобности насосами перекачивают на обжиг.

Сырьевую смесь обжигают в цилиндрических вращающихся печах диаметром 4…5 м и длиной 150…185 м. Изнутри печь футерована огнеупорным материалом. Ось цилиндра печи немного наклонена к горизонтали. Шлам питателями-дозаторами подается в верхний конец печи. Так как печь медленно вращается вокруг оси, обжигаемый материал передвигается к нижнему концу. В нижней части печи расположена форсунка, подающая топливо, которое, сгорая, образует горячие топочные газы. Газы движутся навстречу обжигаемому материалу.

Вначале шлам подсушивается, образуя комья. При достижении материалом температурной зоны с t = 500…750 °С происходит процесс выгорания органических примесей, начинается дегидратация глинистого компонента сырья. Глина теряет пластические и связующие свойства, в результате чего комья материала распадаются в порошок. В зоне печи с t = 750…800 °С начинаются реакции в твердом состоянии между компонентами сырья. Интенсивность этих реакций возрастает с повышением температуры; частицы порошка, сцепляясь, образуют гранулы разного размера. При температуре 900…1000 °С карбонат кальция диссоциирует с образованием окиси кальция и углекислого газа, который удаляется из печи вместе с продуктами горения. По достижении зоны с t = 1250…1250 °С интенсивно протекают реакции взаимодействия оксида кальция с глиноземом, оксидом железа и кремнеземом. Здесь образуются двухкальциевый силикат, трехкальциевый алюминат и четырехкальциевый алюмоферрит. При температуре свыше 1300 °С С3А и С4АF переходят в расплав, в котором частично растворяются CaO и С2S. В растворенном состоянии они реагируют между собой, образуя трехкальциевый силикат С3S. C3S кристаллизуется из расплава при температуре около 1450 °С. Понижение температуры до 1300 °С сопровождается застыванием жидкой фазы, и завершением процесса спекания с образованием гранул портландцементного клинкера.

Сухой способ производства портландцемента применяют тогда, когда в качестве сырьевых материалов используют мергели или смеси твердых известняков и влажных глин. При этом способе в шаровой трубной мельнице совмещаются процессы измельчения, сушки и перемешивания сырья. В этом случае сырьевая смесь выходит из мельницы в виде тонкодисперсной сырьевой муки. Хранится сырьевая мука в железобетонных силосах, где проверяется и корректируется по заданным параметрам ее состав. Перемешивается мука в силосах сжатым воздухом. Готовая смесь поступает на обжиг. Конструкция вращающейся печи для сухого способа производства несколько отличается от аналогичной для мокрого способа, так как на обжиг поступает высушенная сырьевая мука. В данном случае печь оборудуется запечными циклонными теплообменниками, в которых смесь быстро нагревается до 650…800 °С, дегидратируется и частично декарбонизируется. После теплообменников обжиг клинкера завершается в основной секции печи; дальнейший ход процесса аналогичен описанному выше для мокрого способа производства.

Сухой способ по сравнению с мокрым за счет применения циклонных теплообменников обеспечивает снижение затрат топлива при обжиге клинкера на 40…50 %.

Получаемый в результате обжига клинкер представляет собой гранулы серовато-зеленого цвета размером от 15 до 70 мм. После обжига клинкер охлаждают до 80…100 °С в холодильнике. Затем его отправляют на склад, где выдерживают в течение 1…2 недель. За это время оставшийся в клинкере после обжига свободный оксид кальция гасится влагой воздуха и уменьшается твердость гранул.

Помол клинкера с добавкой 3…5 % гипсового камня осуществляется в многокамерных шаровых мельницах. Мельница может работать «на проход», то есть когда клинкер непрерывно поступает со стороны камер грубого помола, а измельченный материал выходит из камеры тонкого помола. Мельница может работать и по замкнутому циклу. В этом случае в ее конструкцию входит центробежный сепаратор, отделяющий крупные зерна, возвращаемые на домол, обеспечивая высокую тонкость помола.

Твердение портландцемента. Твердение портландцемента есть процесс превращения цементного теста (смеси портландцемента с водой) в цементный камень с образованием новых гидратных соединений.

При затворении портландцемента водой в начальный период происходит растворение клинкерных минералов с поверхности зерен цемента до образования насыщенного раствора. Растворение клинкерных минералов прекращается, взаимодействие с водой продолжается путем протекания реакций гидратации (присоединения воды к минералам клинкера) и гидролиза (разложение минералов на другие соединения под действием воды).

Второй период твердения – коллоидация – сопровождается прямой гидратацией клинкерных минералов в твердом состоянии без предварительного их растворения. Период коллоидации сопровождается повышением вязкости цементного теста, характеризующим процесс схватывания портландцемента.

В течение третьего периода протекают процессы перекристаллизации мельчайших коллоидных частиц новообразований. Результатом является рост крупных кристаллов, что обеспечивает твердение и увеличение прочности образовавшегося цементного камня.

Процессы, происходящие при взаимодействии клинкерных минералов с водой характеризуются следующими уравнениями:

– гидролиз трехкальциевого силиката:

3CaO·SiO2 + (n+1)h3O = 2CaO·SiO2·nh3O + Ca(OH)2;

– гидратация двухкальциевого силиката:

2CaO·SiO2 + nh3O = 2CaO·SiO2·nh3O;

– гидратация трехкальциевого алюмината:

3CaO·Al2O3 + 6h3O = 3CaO·Al2O3·6h3O;

– гидролиз четырехкальциевого алюмоферрита:

4CaO·Al2O3·Fe2O3+ mh3O = 3CaO·Al2O3·6h3O + CaO·Fe2O3·nh3O.

Имеющийся в портландцементе гипс вступает в реакцию с образующимся трехкальциевым гидроалюминатом:

3CaO·Al2O3·6h3O + 3(CaSO4·2h3O) + 19h3O = 3CaO·Al2O3·3CaSO4·31h3O.

Кристаллизующийся с присоединением большого количества воды труднорастворимый гидросульфоалюминат кальция имеет название эттрингит.

При твердении портландцемента на воздухе имеет место также процесс карбонизации:

Ca(OH)2 + СO2 + nh3O = CaСO3 + n+1h3O.

Карбонизация происходит с поверхности цементного камня; образующийся труднорастворимый карбонат кальция заполняет собой поры, уплотняя структуру и создавая малопроницаемую пленку.

Все описанные процессы протекают одновременно, оказывая влияние друг на друга. В результате формируется структура цементного камня; он набирает прочность и приобретает прочие эксплуатационные параметры. Структурообразующие процессы интенсивно продолжаются первые 3…7 суток, в дальнейшем они замедляются, однако, при эксплуатации во влажных условиях продолжаются в течение еще многих лет.

Свойства портландцемента. К основным свойствам портландцемента относятся: насыпную и истинную плотность, тонкость помола, нормальную густоту цементного теста, сроки схватывания, равномерность изменения объема и активность. Все эти свойства зависят от минералогического состава портландцементного клинкера, наличия добавок, технологии производства, способа хранения и т.д.

Истинная и насыпная плотность. Истинная плотность портландцемента может изменяться в широких пределах: от 3,0…3,2 до 2,7…1,9 г/см3. Портландцементы с активными минеральными добавками имеют меньшее значение истинной плотности.

Методика определения истинной плотности портландцемента аналогична подобной для любого материала. Разница состоит в том, что вместо воды пикнометр заполняется керосином или другой инертной по отношению к портландцементу жидкостью. Истинную плотность портландцемента , г/см3, вычисляют по формуле

(1)

где т – масса пикнометра с портландцементом, г;

т1 – масса пустого пикнометра, г;

т2 – масса пикнометра с инертной жидкостью, г;

т3 – масса пикнометра с портландцементом и инертной жидкостью после удаления пузырьков воздуха, г;

ж – плотность инертной жидкостью, г/см3.

Расхождение между результатами двух определений истинной плотности не должно быть более 0,02 г/см3. В случаях больших расхождений проводят третье определение и вычисляют среднее арифметическое двух ближайших значений.

Для определения насыпной плотности портландцемента используют мерный сосуд объемом 1 литр. Порядок действий при испытании идентичен таковому для любого мелкозернистого материала. Значение насыпной плотности н, кг/м3 вычисляют по формуле

(2)

где т – масса мерного сосуда, г;

т1 – масса мерного сосуда с портландцементом, г;

V – объем сосуда, см3.

Определение насыпной плотности портландцемента производят два раза, при этом каждый раз берут новую порцию материала.

Тонкость помола. Испытание проводят следующим образом. Из предварительно высушенной пробы цемента для просеивания отвешивают 50 г. Используется сито № 008 (с размером ячеек в свету 0,08 мм). Процесс производят вручную или при помощи прибора для механического просеивания. Операцию просеивания считают законченной, если при контрольном просеивании сквозь сито проходит не более 0,05 г цемента. Остаток на сите взвешивают. Цемент считается удовлетворяющим требованию ГОСТ, если через сито его проходит не менее 85 %.

Нормальная густота цементного теста (водопотребность). Определяют при помощи прибора Вика. В нижнюю часть стержня прибора вставляют металлический цилиндр-пестик диаметром 10 мм.

Порядок проведения испытания следующий. 400 г цемента высыпают в чашу, предварительно смоченную влажной тканью. В цементе делают углубление, в которое вливают предварительно отдозированную воду. В течение 5 мин. с момента приливания воды тесто размешивают. Полученным тестом заполняют кольцо прибора Вика. Пестик приводят в соприкосновение с поверхностью цементного теста в центре кольца, зажимая стержень стопорным винтом. Отпуская стопорный винт дают пестику 30 секунд свободно погружаться в тесто. Величину погружения фиксируют. Нормальной густотой цементного теста считают такую его консистенцию, при которой пестик не доходит на 5…7 мм до пластинки, на которой установлено кольцо. При несоответствующей консистенции цементного теста изменяют количество воды и вновь затворяют тесто, добиваясь погружения пестика на указанную глубину. Нормальную густоту цементного теста характеризуют количеством воды затворения, выраженным в процентах от массы цемента.

Сроки схватывания цементного теста. Сроки схватывания также определяют при помощи прибора Вика на цементном тесте нормальной густоты. Прибор Вика оборудуется иглой диаметром поперечного сечения 1 мм2. Кольцо прибора заполняется цементным тестом нормальной густоты. Игла приводится в соприкосновение с поверхностью теста; в этом положении стержень зажимается стопорным винтом. Затем стержень отпускают, давая игле свободно погружаться в тесто. Иглу погружают каждые 10 минут, протирая ее и меняя место погружения. Началом схватывания считают промежуток времени от момента затворения цемента водой до момента, когда игла не дойдет до пластинки, на которой установлено кольцо на 2…4 мм. Конец схватывания это время от начала затворения до момента, когда игла войдет в тесто не более чем на 1…2 мм.

На сроки схватывания цемента влияют различные факторы: минералогический состав, тонкость помола, условия и продолжительность хранения и т.д. В таблице 1 приведены требования ГОСТ к срокам схватывания различных видов цемента.

Таблица 1

ДОБАВКИ К КЛИНКЕРУ ПРИ ИЗГОТОВЛЕНИИ ПОРТЛАНДЦЕМЕНТА. Добавки в цемент

При изготовлении портландцемента стандарт допускает добавку к клинкеру активных минеральных (гидравлических) добавок в количестве, определяемом видом портландцемента и качеством добавки. Неотъемлемой частью портландцемента является добавка гипса; получение пластифицированного и гидрофобного портландцемента достигается добавкой поверхностно-активных веществ.

Активные минеральные добавки подразделяются на природные и искусственные. В качестве последних применяются в основном доменные гранулированные шлаки, хотя не исключается возможность использования металлургических и топливных шлаков при соответствующем их химико-минералогическом составе.

Природные активные минеральные добавки бывают:

осадочного происхождения, образованные в результате осаждения из водоемов остатков некоторых растений или в результате природного обжига глинистых пород;

вулканического происхождения, образовавшиеся в результате извержения магмы.

В качестве добавок осадочного происхождения в цементном производстве применяются:

диатомиты—состоящие преимущественно из скопления микроскопических панцирей диатомовых водорослей и содержащие главным образом кремнезем в аморфном состоянии;

трепелы — состоящие из микроскопических округлых зерен и содержащие главным образом аморфный кремнезем. Трепелы и диатомиты по своим физическим свойствам сходны с глинами: они пластичны, вязки и легко размокают в воде; опоки — уплотненные диатомиты и трепелы; глиежи — горные породы, образовавшиеся в результате природного обжига глины при подземных пожарах в угольных пластах.

Добавками вулканического происхождения являются: пески вулканические — представляющие собой рыхлые продукты извержения вулканов и содержащие в основном алюмосиликаты;

туфы вулканические — уплотненные и сцементированные (склеенные) застывшей магмой вулканические пеплы;

трассы — видоизмененные разновидности вулканических туфов;

пемза — кремневидные породы, характеризующиеся пористым губчатым строением, называемые поэтому еще вспученным вулканическим стеклом.

Назначение гидравлических добавок в портландцементе состоит в том, чтобы связать в нерастворимые соединения свободный гидрат окиси кальция, выделяющийся при твердении цемента (см. стр. 16). В соответствии с этим основным показателем качества гидравлической добавки является способность ее связывать Са (ОНЬ- Эта способность добавки характеризуется ее активностью.

За показатель активности гидравлической добавки принимается количество извести в миллиграммах, поглощаемой из известкового раствора одним граммом добавки в течение 30 суток.

Добавки с меньшей активностью относятся к инертным. Методика определения активности добавок и технические требования к ним приведены в ГОСТ 6269—63, утвержденном в 1963 г. в качестве искусственных активных минеральных добавок цементная промышленность использует: доменные гранулированные шлаки (кислые и основные), представляющие собой силикатные расплавы, получаемые при выплавке чугуна и превращаемые в мелкозернистое состояние путем быстрого охлаждения;

кремнеземистые отходы — вещества, богатые активным кремнеземом, получаемые при извлечении глинозема из глины при производстве алюминия (сиштоф);

топливные золы и шлаки — остаточный продукт, образующийся при определенном температурном режиме сжигания некоторых видов топлива; по химическому составу он состоит из кислотных окислов (кремнезема, глинозема);

обожженные глины — продукт искусственного обжига глинистых пород и самовозгорающихся в отвалах пустых шахтных пород (глинистые и углистые сланцы).

Оценка качества искусственных активных минеральных добавок, за исключением доменных шлаков, производится так же, как и природных — по величине активности, которая должна быть не ниже следующей (по ГОСТ 6269—'63) в мгСа°

кремнеземные отходы         200

обожженные глины, топливные золы и шлаки .... 50

Кроме того, в соответствии с требованием стандарта содержание в добавках ангидрида серной кислоты (S03) должно быть не более 3% и содержание несгоревших частиц топлива в топливных шлаках и золах не более 15%.

Среди разнообразия искусственных добавок в цементном производстве больше всего применяют доменные гранулированные шлаки.

Показателями качества доменных гранулированных шлаков, принятыми стандартом для их разделения на сорта, является модуль основности М0 и модуль активности Ма.

Шлаки относятся к основным, если М0 больше или равен 1; при М0 меньшем, чем 1, шлаки относятся к кислым.

Модуль основности характеризует гидравлическую активность шлаков, т. е. способность их порошков к самостоятельному твердению при смешивании с водой. Эта способность проявляется только у основных шлаков и тем больше, чем выше их модуль основности.

Объясняется это минералогическим составом шлака. В процессе чугунной плавки для понижения температуры плавления пустой породы, содержащейся в руде, в доменную печь вводится известняк. При обжиге он разлагается на СаО и 002. Образующаяся окись кальция начинает взаимодействовать с кислотными окислами пустой породы — кремнеземом и глиноземом, образуя силикаты и алюминаты кальция — соединения, сходные с минералами клинкера. Чем больше образуется этих соединений, тем выше будет гидравлическая активность шлаков. Таким образом, активность шлаков определяется содержанием окиси кальция и с возрастанием ее количества по отношению к кислотным окислам, т. е. модуля основности, увеличивается.

Улучшается качество шлаков и с повышением модуля активности, т. е. отношения % А1203 к % Si02. В этом случае в шлаках возрастает относительное содержание алюминатов кальция, отличающихся от силикатов кальция быстрым твердением.

Требования к химическому составу шлаков регламентируются ГОСТ 3476—60.

Наряду с требованиями ГОСТ в отношении химического состава доменные гранулированные шлаки не должны содержать более 5% кусков шлака, не подвергшегося грануляции. Размер таких кусков не должен превышать 100 мм по наибольшему измерению.

Гипс как добавка к клинкеру при получении портландцемента применяется в виде гипсового камня. По химическому составу он представлен в основном двуводным сернокислым кальцием CaS04 - 2Н20. Химически чистый двуводный сернокислый кальций — минерал гипс — содержит в овоем составе: СаО — 32,56%; S03 — 46,51 % и Н20 — 20,93% - Гипс должен соответствовать требованиям ГОСТ 4013—61 «Камень гипсовый для производства вяжущих веществ». В зависимости от содержания CaS04-2h30 в гипсовом камне последний подразделяется на три сорта. К 1 сорту относится гипсовый камень с содержанием CaS04 • 2HzO не менее 90%, ко II сорту — не менее 75% и к III сорту — не менее 65%.

Поверхностно-активные добавки подразделяются на пластифицирующие и гидрофобизирующие. Их используют, как отмечалось, для изготовления соответственно пластифицированного и гидрофобного портландцементов. Однако эти добавки вводят также и во все другие разновидности портландцементов. При этом каждый цемент приобретает дополнительное название соответственно пластифицированный или гидрофобный. Например, пластифицированный дорожный портландцемент или гидрофобный сульфатостойкий портландцемент.

Пластифицирующие поверхностно-активные добавки применяют в виде концентратов сульфитно-спиртовой барды (ССБ). Они образуются как отход при получении целлюлозы по сульфитному способу. В зависимости от состояния и соответственно содержания сухого вещества различают концентраты ССБ. жидкие ОКБЖ), содержание сухих веществ в которых не менее 50%, твердые (КБТ) — не менее 76% и порошкообразные (КБП) — не менее 87%.

Оптимальное количество вводимой добавки в цемент находится в пределах 0,15—0,25% от веса цемента, считая на сухое вещество добавки.

Гидрофобизирующие поверхностно-активные добавки применяют в виде асидола, асидол-мылонафта и мылонафта, являющихся нафтеновыми (нефтяными) кислотами, образующимися при переработке нефти.

Кроме указанных веществ, применяют также олеиновую кислоту. Она содержится в животных жирах.

Количество вводимой гидрофобизирующей добавки зависит от ее вида и состава цемента и устанавливается опытом. Обычно величина этой добавки находится в пределах от 0,06 до 0,30% от веса цемента, считая на сухое вещество добавки.

Для лучшего распределения добавок в цементе их вводят в цементную мельницу в жидком виде. Для этой цели применяют специальные дозировочные механизмы. Если же добавки поступают на завод в виде пасты, например мылонафт, или в твердом состоянии, их растворяют в горячей воде. Следует помнить, что величина добавки рассчитывается на сухое вещество от веса цемента. Для этого необходимо знать концентрацию раствора, т. е. количество граммов твердого вещества, содержащегося в 1 л раствора.

3. Портландцементы с органическими добавками.

Такие цементы изготовляют, вводя при помоле клинкера на цементном заводе поверхностно-активные добавки в оптимальной дозировке. Поверхностно-активные добавки можно разделить на гидрофилизующие и гидрофобизующие.

К гидрофилизующим добавкам относятся сульфитно-дрожжевая бражка (СДБ), получаемая из сульфитных щелоков, образующихся при сульфитной варке целлюлозы. СДБ представляет собой в основном кальциевую соль лигносульфоновой кислоты - лигносульфонат кальция, который гидрофилизирует частицы цемента, т.е. улучшает их смачивание водой, одновременно ослабляя силы взаимного сцепления между частицами вяжущего. В результате добавка СДБ повышает пластичность цементного теста и подвижность бетонных смесей.

К гидрофобизующим добавкам относят мылонафт, асидол, асидол-мылонафт, синтетические жирные кислоты и их соли.

Пластифицированный портландцемент изготовляют путем введения при помоле клинкера около 0,25% СДБ (в расчете на сухое вещество). Он отличается от обычного портландцемента способностью придавать растворным и бетонным смесям повышенную подвижность. Пластифицирующий эффект используется для уменьшения водоцементного отношения и повышения плотности, морозостойкости и водонепроницаемости бетона.

Гидрофобный портландцемент изготовляют вводя в мельницу при помоле клинкера 0,1-0,2% мылонафта,асидола, синтетических жирных кислот, их кубовых остатков и других гидрофобизующих добавок. Эти вещества, адсорбируясь на частицах цемента, понижают его гигроскопичность, поэтому гидрофобный цемент, в отличие от обычного, при хранении даже в очень влажных условиях не портится, т.е. не комкуется и сохраняет свою активность. В связи с этим гидрофобные портландцементы рекомендуется поставлять в районы с высокой влажностью воздуха, а также в тех случаях, когда неизбежно длительное хранение цемента.

При изготовлении бетонных смесей, когда происходит смешивание гидрофобного цемента с заполнителями и водой, целостность адсорбционных пленок на частицах цемента нарушается и он нормально реагирует с водой. Гидрофобизующие вещества, введенные при помоле клинкера, действуют и как пластификаторы, т.е. пластифицируют бетонные смеси. Такие вещества сохраняются в отвердевших материалах, существенно повышая их водо- и морозостойкость и увеличивая сопротивляемость агрессивным воздействиям среды.

4. Портландцемент с минеральными добавками.

Активными минеральными добавками называютприродные или искусственные вещества, которые при смешивании в тонкоизмельченном виде с воздушной известью и затворении водой образуют тесто, способное после твердения на воздухе продолжать твердеть и под водой. Активные минеральные добавки (называемые иначе гидравлическими добавками) содержат диоксид кремния в аморфном, а следовательно, в химически активном состоянии и способны поэтому взаимодействовать с Са(ОН, образуя гидросиликаты кальция.

Активные минеральные добавки могут быть природными (естественными) и искусственными. В качестве природных активных добавок широко используют осадочные горные породы (диатомит, трепел, опоку, горелые глинистые породы - глиежи), а также породы вулканического происхождения (вулканический пепел, туф,пемзу, витрофир, трасс). Искусственные активные минеральные добавки представляют собой побочные продукты и отходы промышленности: быстоохлажденные (гранулированные) доменные шлаки; белитовый (нефелиновый) шлам - отход глиноземного производства, содержащий в своем составе до 80% минерала белита (двукальциевого силиката); зола-унос - отход, получаемый при сжигании твердого топлива в пылевидном состоянии и улавливаемый электрофильтрами и другими устройствами. Использование отходов промышленности для выпуска вяжущих веществ имеет большое народно-хозяйственное значение.

Активная добавка химически связывает растворимый в воде гидроксид кальция, выделяющийся при твердении портландцемента, при этом повышается плотность цементного камня, возрастает его сопротивление коррозии. Поэтому активные минеральные добавки применяют для повышения плотности, водостойкости и солестойкости бетонов и растворов. Некоторые из них используют для приготовления жароупорных бетонов и растворов на портландцементе.

Пуццолановый портландцемент изготовляют путем совместного помола клинкера и активной минеральной добавки с необходимым количеством гипса.добавок осадочного происхождения должно быть не менее 20 и не более 30%, а вулканических добавок не менее 25 и не более 40%. Активная минеральная добавка вначале адсорбирует, а затем химически связывает , образующийся при взаимодействии алита с водой:

В ходе этого процесса, происходящего во влажных условиях и при положительной температуре, растворимый гидроксид кальция связывается в практически нерастворимый гидросиликат кальция. В результате значительно возрастает стойкость бетона к коррозии первого вида - выщелачиванию . Пуццолановый портландцемент следует применять для бетонов, постоянно находящихся во влажных условиях (подводных и подземных частей сооружений). На воздухе бетон на пуццолановом портландцементе дает большую усадку и в сухих условиях частично теряет прочность. Кроме того, бетоны на этом цементе имеют низкую моозостойкость и не годятся для сооружений, подвергающихся замораживанию и оттаиванию. Пуццолановый портландцемент твердеет медленнее, чем портландцемент, в особенности при низких температурах, поэтому его не следует применять при зимних бетонных работах. Он обладает сравнительно не большим тепловыделением, а поэтому его часто используют для бетонирования внутренних частей массивных сооружений (плотин, шлюзов и т.п.).

Шлакопортландцемент - гидравлическое вяжущее вещество, твердеющее в воде и на воздухе. Он получается путем совместного тонкого помола клинкера и гранулированного доменного (или электротермофосфорного) шлака с необходимым количеством гипса. Допускаются раздельный помол компонентов и их последующее смешение. Количество доменного шлака в шлакопортландцементе должно быть не менее 21 и не более 80% (массы цемента). Допускается замена до 10% шлака трепелом или другой активной минеральной добавкой.

Доменные шлаки по своему химическому составу напоминают цементный клинкер. В них преобладают оксиды, %: СаО 30-50; 28-30; 8-24; MnO 1-3; MgO 1-18; их общее содержание составляет 90-95%. Гидровлическая активность шлаков характеризуется модулями основности (Мо) и активности (Ма).

Модуль основности - отношение содержащихся в шлаке основных оксидов к сумме кислотных, %:

В зависимости от модуля основности различают основные шлаки; их , и кислые, имеющие . Более активные основные шлаки.

Гидравлическая активность доменных шлаков возрастает при увеличении модуля активности, определяемого по формуле, %:

.

Шлак, применяемый в качестве добавки к цементу, обязательно подвергается быстрому охлаждению водой или паром. Эта операция называется грануляцией, т.к. в процессе быстрого охлаждения шлаковый расплав распадается на мелкие зерна (гранулы). Процесс твердения шлакопортландцемента значательно ускоряется при тепловлажностной обработке, поэтому его эффективно применять в сборных изделиях, изготовляемых с пропариванием.

Незначительное содержание в цементном камне повышает стойкость шлакопортландцемента в мягких и сульфатных водах по сравнению с портландцементом. Тепловыделение при твердение шлакопортландцемента в 2-2,5 меньше, чем портландцемента, поэтому он является самым подходящим цементом для бетона массивных конструкций. Шлакопортландцемент выгодно отличается от пуццоланового портландцемента умеренной водопотребностью, более высокой воздухостойкостью и морозостойкостью. Он успешно применяется для надземных, подземных и подводных частей сооружений. Стоимость его на 15-20% ниже стоимости портландцемента. Его недостаток - он медленно набирает прочность в первое время твердения, в особенности при пониженных температурах.

Быстротвердеющий шлакопортландцемент марки 400 за 3 сут твердения должен приобрести предел прочности при сжатии не менее 20 МПа, при изгибе - не менее 3,5 МПа. этот вид цемента эффективно применять в производстве бетонных и железобетонных изделий, изготовляемых с применением тепловлажностной обработки.

Помол клинкера и добавок

Общие сведения. Помол клинкера и добавок — завершающая стадия производства портландцемента. Измельчают клинкер в трубных мельницах открытого и замкнутого цикла. Конструкции мельниц и основные схемы помола аналогичны рассмотренным в гл.IV.

Отличительные особенности измельчения клинкера по сравнению с помолом сырьевых материалов при сухом способе производства портландцемента обусловлены более высокой твердостью клинкера. Кроме того, для получения качественного цемента размалываемые зерна должны иметь заданный зерновой состав. Цемент, содержащий в определенном сочетании мелкие и относительно крупные зерна, обладает наиболее высокими показателями физико-механических свойств.

Твердость клинкера и его размолоспособность зависят от режима и способа обжига (в шахтных или вращающихся печах), а также от минералогического состава сырья. Способность клинкера к измельчению характеризуется коэффициентом размолоспособно- сти. Его принимают равным 1 для клинкеров вращающихся печей средней размолоспособности, 0,8—0,9 — с повышенной и 1,1 —с пониженной размолоспособностью. Клинкер шахтных печей более пористый, так как из гранул выгорает уголь, поэтому сопротивление размолу такого клинкера оказывается меньше и коэффициент размолоспособности его принимают равным 1,15—1,25. Чем выше коэффициент размолоспособности, тем быстрее измельчается клинкер и тем больше производительность мельницы.

При очень быстром охлаждении клинкера размолоспособность его понижается в результате значительного содержания в клинкере клинкерного стекла — не успевшего закристаллизоваться расплава. Примерно так же на свойства клинкера влияет содержание двух- кальциевого силиката по сравнению с трехкальциевым. Последний, имея более хрупкие кристаллы, размалывается быстрее.

Тонкость помола цемента, характеризуемая остатком на сите № 008, составляет 8—12% для большинства цементов (согласно стандарту этот остаток не должен повышать 15%); удельная поверхность такого цемента равна примерно 250—300 м2/кг. Расход электроэнергии на получение 1 т цемента при измельчении клинкера с коэффициентом размолоспособности 1 составляет 35—40 кВт-ч. С повышением тонкости помола затрата электроэнергии возрастает в значительно большей степени, чем степень измельчения. Так, увеличение тонкости помола на каждый 1% уменьшения остатка на сите № 008 повышает расход электроэнергии на 4—6% и снижает производительность мельницы на 3—5%.

Применение замкнутого цикла помола повышает производительность мельницы на 10—20%. Причина этого заключается в систематическом отделении от общей массы размалываемого в мельнице материала мельчайших зерен, которые налипают на мелющие тела и снижают размалывающую способность последних.

Для сепарации цемента применяют в основном центробежные сепараторы. Трубная мельница работает в замкнутом цикле чаще всего с двумя сепараторами. Производительность сепаратора зависит от тонкости помола. Так, увеличение удельной поверхности с 250 до 300 м2/кг уменьшает производительность сепаратора в 1,5 раза, а до 500 м2/кг — в 2 раза. ,

Сепараторы применяют диаметром от 2800 до 5500 мм, их производительность при удельной поверхности цемента 250 м2/кг составляет соответственно от 18 до 100 т/ч.

При замкнутом цикле помола получают цемент более устойчивого качества и с более высокими показателями физико-механических свойств как в отношении марочной прочности, так и в отношении скорости твердения в начальный период. Например, по этой

схеме получают особо быстротвердеющий цемент. Повышение показателей физико-механических свойств цемента при замкнутом цикле помола обусловливается однородным зерновым составом и уменьшением среднего размера цементного зерна. Из сепаратора выходит цемент постоянного зернового состава и с заданной удельной поверхностью, что достигается соответствующим регулированием работы сепаратора.

Обогащение цемента мельчайшей фракцией, задерживаемой в фильтрах для очистки аспирационного воздуха мельницы, также позволяет получать быстротвердеющий цемент. Этот способ применяют при помоле в открытом цикле, добавляя к части цемента пыль из фильтра.

Для охлаждения цемента применяют холодильники, представляющие собой вертикальные или горизонтальные винтовые конвейеры с герметическим корпусом, орошаемые водой. При перемещении цемента в винтовом конвейере он интенсивно перемешивается лопастями и охлаждается, соприкасаясь с холодным корпусом конвейера.

Особое влияние на качество помола и производительность цементной мельницы оказывает выбор ассортимента мелющих тел, которые подбираются в процессе эксплуатации в зависимости от физической характеристики размалываемых материалов.

Технологическая схема помола портландцемента на цементном заводе с трубной мельницей размером 3,2x15 м, работающей в открытом цикле, изображена на  97. Цементный клинкер и гипс со склада 8 подаются грейферным краном 9 в расходные бункера 6 мельницы. В один из бункеров из сушильного отделения поступают

гидравлические добавки (трепел, опока, туф или др.) или доменный гранулированный шлак. Тарельчатыми питателями 7 с автоматическим управлением материалы из расходных бункеров 6 рав- н жерно подаются в мельницу 13 и, тщательно измельченные, поступают через полую цапфу мельницы в аспирационную шахту 14, л из нее — в расходный бункер цемента 18, из которого насосом 19 ютовый цемент перекачивается на склад в цементные силосы.

Для облегчения помола клинкера или при производстве пластифицированного или гидрофобного цемента к клинкеру при его измельчении добавляют поверхностно-активные вещества (ПАВ): триэтаноламин (ТЭА), сульфитно-спиртовую барду (ССБ), смеси ТЭА и ССБ (1 : 1), мылонафт или другие добавки. Добавки подают в мельницу в виде водного раствора ковшовым питателем 12 или распылительной форсункой.

С целью интенсификации помола мельница аспирируется. Поступающий из барабана мельницы сильно запыленный цементный пылью воздух вначале частично очищается в аспирационной шахте 14, затем в циклонах 5 и окончательно в электрофильтре 4. Цемент, осажденный в циклонах и электрофильтре, собирается сборным винтовым конвейером 1, направляется в передаточный винтовой конвейер 17, а из него в расходный бункер 18 цемента.

В настоящее время для помола клинкера и добавок с целью получения высокомарочных цементов с удельной поверхностью более 350 м2/кг применяют помольный агрегат с сеператорной мельницей 4X13,5 м ( 98). Производительность этого агрегата при работе по замкнутому циклу 100—110 т/ч, общая мощность установленного электрооборудования 3700 кВт, масса без электрооборудования и аппаратуры 585 т.

Главные технологические механизмы помольного агрегата:

трубная мельница, сепаратор, элеватор, двухкамерный пневматический насос. Загрузочная часть трубной мельницы с внутренним диаметром барабана 4 м и длиной рабочей части барабана 13,5 м состоит из течки с тумбой, крышки, облицованной износоустойчивой хромом арганцовистой футеровкой, винтового питателя (трубошнека) с устройством, предотвращающим перетекание из мельницы размалываемого материала.

Сварной барабан мельницы 1 футерован внутри броневыми плитами из хро- момарганцовистой стали и разделен двойной перегородкой на две камеры. Первая камера барабана мельницы загружена шарами, вторая — цильпебсом; общая масса мелющих тел при нормальной загрузке 238 т. Барабан полыми цапфами опирается на сферические самоустанавливающие подшипники и вращается с частотой 16 об/мин от привода с электродвигателем мощностью 3200 кВт.

Мельница снабжена установкой для ввода воды во вторую камеру с целью интенсификации помола.

Смазочная система мельницы и привода — циркуляционная жидкостная, состоит из системы трубопроводов, контрольно-измерительной аппаратуры и двух станций — одна обслуживает привод и главный электродвигатель, вторая — подшипники мельницы. Помольный агрегат снабжен также автоматической станцией, предназначенной для подачи густого смазочного материала в уплотнения мельницы и подшипники сепараторов.

Сепаратор 3— циклонный, диаметр большого циклона равен 5000 мм.

Высота элеватора 10—30 м, его производительность до 400 т/ч. Производительность по цементу двухкамерного пневматического насоса 9 составляет 200 т/ч. Насос способен перекачивать цемент на расстояние до 200 м и на высоту до 35 м.

Помольный агрегат работает следующим образом. Клинкер вместе с добавками поступает в мельницу 1 из силосов по конвейеру 2. Измельченный материал выпадает через полую разгрузочную цапфу мельницы в элеватор 10 и переносится им в сепаратор 3. В сепараторе материал разделяется на мелкую фракцию — цемент и крупку, которая отправляется в мельницу на доизмель- чение, а цемент поступает в камерные насосы 9 и перекачивается на склад цемента.

Для интенсификации помола предусмотрена аспирация барабана мельницы. Аспирационный воздух очищается в циклонах 5 и электрофильтре 6. Очищенный воздух удаляется в атмосферу вентилятором 7.

Помольный агрегат оборудован системой автоматического управления и контрольных измерений, позволяющей дистанционно управлять механизмами, контролировать и регулировать технологические параметры, качество продукции и производительность агрегата, состояние отдельных механизмов.

Помольный агрегат с сепараторной мельницей 4X13,5 может быть оборудован системой автоматического управления всем процессом помола с помощью электронно-вычислительной машины.

Правила эксплуатации цементных мельниц такие же, как и при обслуживании сырьевых, изложенных в гл. IV.


Смотрите также