Инверторный блок питания


Импульсный блок питания своими руками: принцип работы, схемы

В большинстве современных электронных устройств практически не используются аналоговые (трансформаторные) блоки питания, им на смену пришли импульсные преобразователи напряжения. Чтобы понять, почему так произошло, необходимо рассмотреть конструктивные особенности, а также сильные и слабы стороны этих устройств. Мы также расскажем о назначении основных компонентов импульсных источников, приведем простой  пример реализации, который может быть собран своими руками.

Конструктивные особенности и принцип работы

Из нескольких способов преобразования напряжения для питания электронных компонентов, можно выделить два, получивших наибольшее распространение:

  1. Аналоговый, основным элементом которого является понижающий трансформатор, помимо основной функции еще и обеспечивающий гальваническую развязку.
  2. Импульсный принцип.

Рассмотрим, чем отличаются эти два варианта.

БП на основе силового трансформатора

Рассмотрим упрощенную структурную схему данного устройства. Как видно из рисунка, на входе установлен понижающий трансформатор, с его помощью производится преобразование амплитуды питающего напряжения, например из 220 В получаем 15 В. Следующий блок – выпрямитель, его задача преобразовать синусоидальный ток в импульсный (гармоника показана над условным изображением). Для этой цели используются выпрямительные полупроводниковые элементы (диоды), подключенные по мостовой схеме. Их принцип работы можно найти на нашем сайте.

Упрощенная структурная схема аналогового БП

Следующий блок играет выполняет две функции: сглаживает напряжение (для этой цели используется конденсатор соответствующей емкости) и стабилизирует его. Последнее необходимо, чтобы напряжение «не проваливалось» при увеличении нагрузки.

Приведенная структурная схема сильно упрощена, как правило, в источнике данного типа имеется входной фильтр и защитные цепи, но для объяснения работы устройства это не принципиально.

Все недостатки приведенного варианта прямо или косвенно связаны с основным элементом конструкции – трансформатором. Во-первых, его вес и габариты, ограничивают миниатюризацию. Чтобы не быть голословным приведем в качестве примера понижающий трансформатор 220/12 В номинальной мощностью 250 Вт. Вес такого агрегата – около 4-х килограмм, габариты 125х124х89 мм. Можете представить, сколько бы весила зарядка для ноутбука на его основе.

Понижающий трансформатор ОСО-0,25 220/12

Во-вторых, цена таких устройств порой многократно превосходит суммарную стоимость остальных компонентов.

Импульсные устройства

Как видно из структурной схемы, приведенной на рисунке 3, принцип работы данных устройств существенно отличается от аналоговых преобразователей, в первую очередь, отсутствием входного понижающего трансформатора.

Рисунок 3. Структурная схема импульсного блока питания

Рассмотрим алгоритм работы такого источника:

  • Питание поступает на сетевой фильтр, его задача минимизировать сетевые помехи, как входящие, так и исходящие, возникающие вследствие работы.
  • Далее вступает в работу блок преобразования синусоидального напряжения в импульсное постоянное и сглаживающий фильтр.
  • На следующем этапе к процессу подключается инвертор, его задача связана с формированием прямоугольных высокочастотных сигналов. Обратная связь с инвертором осуществляется через блок управления.
  • Следующий блок – ИТ, он необходим для автоматического генераторного режима, подачи напряжения на цепи, защиты, управления контроллером, а также нагрузку. Помимо этого в задачу ИТ входит обеспечение гальванической развязки между цепями высокого и низкого напряжения.

В отличие от понижающего трансформатора, сердечник этого устройства изготавливается из ферримагнитных материалов, это способствует надежной передачи ВЧ сигналов, которые могут быть в диапазоне 20-100 кГц. Характерная особенность ИТ заключается в том, что при его подключении критично включение начала и конца обмоток. Небольшие размеры этого устройства позволяют изготавливать приборы миниатюрных размеров, в качестве примера можно привести электронную обвязку (балласт) светодиодной или энергосберегающей лампы.

Пример миниатюрных импульсных БП
  • Далее вступает в работу выходной выпрямитель, поскольку он работает с высокочастотным напряжением, для процесса необходимы быстродействующие полупроводниковые элементы, поэтому для этой цели применяют диоды Шоттки.
  • На завершавшей фазе производится сглаживание на выгодном фильтре, после чего напряжение подается на нагрузку.

Теперь, как и обещали, рассмотрим принцип работы основного элемента данного устройства – инвертора.

Как работает инвертор?

ВЧ модуляцию, можно сделать тремя способами:

  • частотно-импульсным;
  • фазо-импульсным;
  • широтно-импульсным.

На практике применяется последний вариант. Это связано как с простотой исполнения, так и тем, что у ШИМ неизменна коммуникационная частота, в отличие от двух остальных способов модуляции. Структурная схема, описывающая работу контролера, показана ниже.

Структурная схема ШИМ-контролера и осциллограммы основных сигналов

Алгоритм работы устройства следующий:

Генератор задающей частоты формирует серию прямоугольных сигналов, частота которых соответствует опорной. На основе этого сигнала формируется UП пилообразной формы, поступающее на вход компаратора КШИМ. Ко второму входу этого устройства подводится сигнал UУС, поступающий с регулирующего усилителя. Сформированный этим усилителем сигнал соответствует пропорциональной разности UП (опорное напряжение) и UРС (регулирующий сигнал от цепи обратной связи). То есть, управляющий сигнал UУС, по сути, напряжением рассогласования с уровнем, зависящим как от тока на грузке, так и напряжению на ней (UOUT).

Данный способ реализации позволяет организовать замкнутую цепь, которая позволяет управлять напряжением на выходе, то есть, по сути, мы говорим о линейно-дискретном функциональном узле. На его выходе формируются импульсы, с длительностью, зависящей от разницы между опорным и управляющим сигналом. На его основе создается напряжение, для управления ключевым транзистором инвертора.

Процесс стабилизации напряжения на выходе производится путем отслеживания его уровня, при его изменении пропорционально меняется напряжение регулирующего сигнала UРС, что приводит к увеличению или уменьшению длительности между импульсами.

В результате происходит изменение мощности вторичных цепей, благодаря чему обеспечивается стабилизация напряжения на выходе.

Для обеспечения безопасности необходима гальваническая развязка между питающей сетью и обратной связью. Как правило, для этой цели используются оптроны.

Сильные и слабые стороны импульсных источников

Если сравнивать аналоговые и импульсные устройства одинаковой мощности, то у последних будут следующие преимущества:

  • Небольшие размеры и вес, за счет отсутствия низкочастотного понижающего трансформатора и управляющих элементов, требующих отвода тепла при помощи больших радиаторов. Благодаря применению технологии преобразования высокочастотных сигналов можно уменьшить емкость конденсаторов, используемых в фильтрах, что позволяет устанавливать элементы меньших габаритов.
  • Более высокий КПД, поскольку основные потери вызывают только переходные процессы, в то время как в аналоговых схемам много энергии постоянно теряется при электромагнитном преобразовании. Результат говорит сам за себя, увеличение КПД до 95-98%.
  • Меньшая стоимость за счет применения мене мощных полупроводниковых элементов.
  • Более широкий диапазон входного напряжения. Такой тип оборудования не требователен к частоте и амплитуде, следовательно, допускается подключение к различным по стандарту сетям.
  • Наличие надежной защиты от КЗ, превышения нагрузки и других нештатных ситуаций.

К недостаткам импульсной технологии следует отнести:

Наличие ВЧ помех, это является следствием работы высокочастотного преобразователя. Такой фактор требует установки фильтра, подавляющего помехи. К сожалению, его работа не всегда эффективна, что накладывает некоторые ограничения на применение устройств данного типа в высокоточной аппаратуре.

Особые требования к нагрузке, она не должна быть пониженной или повышенной. Как только уровень тока превысит верхний или нижний порог, характеристики напряжения на выходе начнут существенно отличаться от штатных. Как правило, производители (в последнее время даже китайские) предусматривают такие ситуации и устанавливают в свои изделия соответствующую защиту.

Сфера применения

Практически вся современная электроника запитывается от блоков данного типа, в качестве примера можно привести:

  • различные виды зарядных устройств; Зарядки и внешние БП
  • внешние блоки питания;
  • электронный балласт для осветительных приборов;
  • БП мониторов, телевизоров и другого электронного оборудования.
Импульсный модуль питания монитора

Собираем импульсный БП своими руками

Рассмотрим схему простого источника питания, где применяется вышеописанный принцип работы.

Принципиальная схема импульсного БП

Обозначения:

  • Резисторы: R1 – 100 Ом, R2 – от 150 кОм до 300 кОм (подбирается), R3 – 1 кОм.
  • Емкости: С1 и С2 – 0,01 мкФ х 630 В, С3 -22 мкФ х 450 В, С4 – 0,22 мкФ х 400 В, С5 – 6800 -15000 пФ (подбирается),012 мкФ, С6 – 10 мкФ х 50 В, С7 – 220 мкФ х 25 В, С8 – 22 мкФ х 25 В.
  • Диоды: VD1-4 – КД258В, VD5 и VD7 – КД510А, VD6 – КС156А, VD8-11 – КД258А.
  • Транзистор VT1 – KT872A.
  • Стабилизатор напряжения D1 – микросхема КР142 с индексом ЕН5 – ЕН8 (в зависимости от необходимого напряжения на выходе).
  • Трансформатор Т1 – используется ферритовый сердечник ш-образной формы размерами 5х5. Первичная обмотка наматывается 600 витков проводом Ø 0,1 мм, вторичная (выводы 3-4) содержит 44 витка Ø 0,25 мм, и последняя – 5 витков Ø 0,1 мм.
  • Предохранитель FU1 – 0.25А.

Настройка сводится к подбору номиналов R2 и С5, обеспечивающих возбуждение генератора при входном напряжении 185-240 В.

Инвертор сварочный своими руками - схема и сборка блока питания, как сделать ремонт

Для выполнения сварочных работ в домашних условиях незаменим сварочный инверторный аппарат. Принцип его работы основан на использовании транзисторов и переключателей, при помощи которых сначала сетевое напряжение трансформируется в постоянное.

Затем изменяются характеристики тока (повышается частота синусоиды). Эти действия приводят к понижению значения напряжения, что приводит к выпрямлению тока, при этом частота тока не изменяется.

Широкое использование данных аппаратов связано с рядом его достоинств, к которым можно отнести:

  • Небольшие габаритные размеры, а также малый вес, что существенно облегчает труд при сварочных работах и позволяет расположить аппарат в удобном месте;
  • Возможность изготовить его самостоятельно, затратив немного средств. Кроме этого, сборка своими руками позволяет подобрать детали с необходимыми характеристиками, а также в дальнейшем достаточно просто выполнить ремонт агрегата или замену деталей для корректировки характеристик;
  • Высокий КПД, что позволяет ему конкурировать с готовыми аппаратами.

Недостатками сварочного инвертора, который изготовлен самостоятельно, являются:

  • Малый срок службы, при неверно подобранных деталях;
  • Отсутствует возможность реализовать дополнительные функции, которые способны улучшать качество сварного шва;
  • При необходимости получить аппарат большой мощности требуется организация дополнительной системы охлаждения, что увеличивает конечную стоимость и габариты.

Следует учесть, что самостоятельная сборка инвертора достаточно кропотливый труд, занимающий много времени и требующий определенных навыков. Но современные производители предлагают широкий выбор комплектующих, что значительно облегчает их выбор. Сам подбор деталей основан на совместимости параметров по типам и характеристика, а также на возможности простой замены в дальнейшем.

Основными элементами инвертора являются:

  • блок питания;
  • силовая часть и ее ключи.

К базовым выходным характеристикам относятся:

  • потребляемый ток, причем его максимальное значение;
  • напряжение и частота в сети;
  • значение тока сварки, при котором будет выполняться шов.

Подготовительный этап

Перед тем как приступить к покупке деталей для изготовления инвертора необходимо точно представлять значения выходных параметров, а также иметь электрические схемы всех элементов (общая схема, блока питания).

Рассмотрим изготовление сварочного аппарата с входными характеристиками:

  • напряжение сети 220 В;
  • частота 50 ГЦ;
  • сила тока 32 А.

На выходе получится ток, преобразованный до величины 250 А, то есть увеличил свое входное значение в 8 раз. Данным аппаратом можно выполнять сварной шов, расположив электрод менее 1 см к свариваемой детали.

Перед тем как приступить к сборке аппарата необходимо подготовить следующие материалы и инструменты:

  • отвертки (плоские и крестовые) разных размеров;
  • приборы для измерения напряжения и силы тока (вольтметр и амперметр), которые можно заменить современным универсальным измерительным прибором;
  • паяльник с маленьким жалом;
  • компоненты для выполнения паяльных работ (канифоль, проволока);
  • осциллограф, применение которого позволит контролировать изменение синусоиды тока;
  • специальная сталь с подходящими электротехническими параметрами;
  • хлопковая и стекловолоконная ткани;
  • сердечник для трансформатора;
  • обмотки трансформаторов:
  • первичная на 100 витков из проволоки диаметром 0,3 мм
  • вторичные (внутренняя – это 15 витков проволокой 1 мм, средняя – это 15 витков из проволоки 0,2 мм, наружная – 20 витков, выполненные проволокой 0,35 мм);
  • текстолит;
  • болты и саморезы;
  • транзисторы с необходимыми характеристиками;
  • провода разного сечения;
  • силовой кабель;
  • изолента или специальная бумага.

После выполнения подготовительных работ можно приступать к сборке.

Устройство сварочного инвертора

Блок питания инвертора

Плату, где располагается блок питания инвертора, собирают отдельно от силового элемента аппарата. Кроме этого, их требуется разделить между собой листом металла, который закреплен к корпусу жестко.

Основным элементом блока питания является трансформатор, который можно изготовить самостоятельно. С его помощью напряжение, которое поступает из сети, будет преобразовываться до величины безопасной для жизни, а затем повышать силу тока для выполнения сварки.

Материалом для сердечника может быть железо размеров 7х7 или 8х8. При этом можно брать как стандартные пластины или отрезать требуемый кусок металла от имеющегося листа. Обмотка выполняется медным проводом марки ПЭВ, так как именно этот материал максимально обеспечивает требуемые характеристики (малое сечение при достаточной ширине).

Использование другого материала в качестве обмотки может существенно повлиять на характеристики трансформатора, например, увеличить нагрев данной детали.

Сборку трансформатора, состоящего из 2-х обмоток, начинают создания первичной обмотки. Для этого проволоку сечением 0,3 мм обматывают 100 раз на сердечник. При этом важно чтобы обмотка занимала всю ширину сердечника. Эта особенность позволит улучшить работу инвертора при перепадах сетевого напряжения в процессе дальнейшей работы.

При этом каждый виток должен плотно прилегать к предыдущему, при этом нахлеста лучше избегать. После того как все 100 витков выполнены, необходимо уложить слой специальной изолирующей бумаги или ткани из стекловолокон. Следует учесть, что бумага будет темнеть в процессе эксплуатации.

Далее выполняют вторичную обмотку. Для этого необходимо взять медный провод сечением 1 мм и сделать 15 оборотов, стараясь распределить их по всей ширине, на равном расстоянии друг от друга. После покрытия их лаком и просушки, наматывают 2 слой медным проводом сечением 0,2 мм, делая также 15 оборотов.

Их тоже необходимо распределить, как и в предыдущем случае и изолировать. Последним слоем для вторичной обмотки будет ПЭВ сечением 0,35 мм, витков при этом будет 20. Последний слой также необходимо изолировать.

Блок питания инверторного сварочного аппарата

Корпус

Далее приступают к изготовлению корпуса. Его размер должен быть соизмерим с габаритами трансформатора и плюс 70% на размещение остальных деталей инвертора. Сам корпус может быть выполнен из листовой стали толщиной 0,5-1 мм.

Для соединения углов можно использовать болты или при помощи специальных гибочных станков изогнуть лист до нужных размеров. Если на корпусе расположить ручку для крепления инвертора на ремне или для простоты переноса, то это в значительной степени облегчит эксплуатацию прибора в дальнейшем.

Кроме этого, конструкция корпуса должна предусматривать достаточно простой доступ ко всем деталям, расположенным внутри него. На нем необходимо проделать несколько технологических отверстий для переключателей, кнопки питания, световой сигнализации о работоспособности, а также кабельные разъемы.

Схема генератора сварочного инвертора

Силовая часть и инверторный блок

Силовым блоком для инвертора служит трансформатор, особенностью которого является наличие 2 сердечников, которые располагают рядом с маленьким зазором, прокладывая лист бумаги. Этот трансформатор собирается аналогично предыдущему. Важной деталью является то, что изоляционный слой между витками провода необходимо усилить, что позволит не допустить пробоя напряжения. Кроме этого, между слоями проводов укладывают прокладки, выполненные из фторопласта.

К силовой части можно отнести конденсаторы, которые соединены согласно схеме. Они предназначены для уменьшения резонанса трансформаторов, а также призваны минимизировать и компенсировать потери тока в транзисторах.

Инверторный блок аппарата служит для преобразования тока, у которого на выходе повышается частота. Для этого в инвертор используют транзисторы или диоды. Если решено использовать диоды в этом блоке, то их необходимо собрать в косой мост по специальной схеме. Выводы из него идут к транзисторам, которые предназначены для возврата переменного тока с большей частотой. Диодный мост и транзисторы должны быть разделены перегородкой.

Фото блока питания самодельного сварочного инвертора

Система охлаждения

Так как все элементы агрегата подвержены нагреву, то необходимо организовать систему охлаждения, которая обеспечит бесперебойную надежную работу. Для этого можно использовать кулеры от компьютеров, а также выполнить несколько дополнительных отверстий в корпусе для легкого доступа воздуха внутрь аппарата. Однако таких отверстий не должно быть слишком много, чтобы избежать попадания лишней пыли в корпус.

Кулеры должны располагаться таким образом, чтобы они могли работать на вывод воздуха из корпуса аппарата. Элементы охлаждения нуждаются в профилактике, например, замене термопасты, поэтому доступ к ним должен быть простой.

Есть несколько деталей в инверторе, которые требуют обязательного охлаждения. Это трансформаторы. Для их охлаждения разумно монтировать 2 вентилятора. Кроме этого, в дополнительном охлаждении нуждается диодный мост. Он устанавливается на радиаторе.

Установка такого элемента, как термодатчик, и дальнейшее его соединение со светодиодом на корпусе, позволит подавать сигнал при достижении недопустимой температуры и отключать инвертор от питания для охлаждения.

Трансформаторный сварочный аппарат своими руками

Сборка

Сборка инвертора осуществляется в следующем порядке:

  • на основание корпуса располагается трансформатор, диодный мост, схема управления;
  • выполняется скрутка, спайка и крепление между собой всех проводов;
  • на наружной панели выводятся световая индикация, кнопка пуска, разъем кабеля.

Когда все установлено, можно проверять работу аппарата.

Проверка работы

Чтобы проверить аппарат необходимо использовать для этого осциллограф. Инвертор подключают к сети в 220 В, а затем по прибору проверяются, насколько выходные параметры соответствуют требуемым. Например, напряжение должно быть в пределах 500-550 В. При абсолютно правильной сборке и правильно подобранных деталях, это значение не должно переходить порог в 350 В.

После таких замеров и приемлемых показателей осциллографа, можно приступать к выполнению сварочного шва. После того, как первый электрод полностью выгорит, необходимо провести замеры температуры на трансформаторе. Если он кипит, то схема нуждается в доработке, аппарат необходимо отключить и внести изменения. Только после того, как приняты меры по устранению данного недочета, можно повторно выполнить запуск с таким же замером температуры после окончания работы.

Пример компоновки передней панели инвертора

Правила эксплуатации

Сварочный инвертор можно применять как для сваривания деталей выполненных из черного металла, так и вести работы с цветным. Он полезен как в частном доме, на даче, так и в гараже.

При его эксплуатации необходимо следить за качеством напряжения и частоты в сети.

Для продолжительного использования данного агрегата необходимо периодически проверять работоспособность отдельных его чистке, выполнять профилактические мероприятия по очистке его от пыли и грязи.

Блиц-советы

При самостоятельном изготовлении инвертора необходимо:

  • иметь схемы всех элементов аппарата;
  • правильно подбирать комплектующие;
  • выдерживать все необходимые зазоры и тщательно изолировать элементы;
  • соблюдать правила техники безопасности.

Что такое импульсный блок питания и где применяется

Импульсный блок питания служит для преобразования входного напряжения до величины, необходимой внутренним элементам устройства. Иное название импульсных источников, получившее широкое распространение, – инверторы.

Что это такое?

Инвертор – это вторичный источник питания, который использует двойное преобразование входного переменного напряжения. Величина выходных параметров регулируется путем изменения длительности (ширины) импульсов и, в некоторых случаях, частоты их следования. Такой вид модуляции называется широтно-импульсным.

Принцип работы импульсного блока питания

В основе работы инвертора лежит выпрямление первичного напряжения и дальнейшее его преобразование в последовательность импульсов высокой частоты. Этим он отличается от обычного трансформатора. Выходное напряжение блока служит для формирования сигнала отрицательной обратной связи, что позволяет регулировать параметры импульсов. Управляя шириной импульсов, легко организовать стабилизацию и регулировку выходных параметров, напряжения или тока. То есть это может быть как стабилизатор напряжения, так и стабилизатор тока.

Количество и полярность выходных значений может быть самым различным в зависимости от того, как работает импульсный блок питания.

Разновидности блоков питания

Применение нашли несколько типов инверторов, которые отличаются схемой построения:

  • бестрансформаторные;
  • трансформаторные.

Первые отличаются тем, что импульсная последовательность поступает непосредственно на выходной выпрямитель и сглаживающий фильтр устройства. Такая схема имеет минимум комплектующих. Простой инвертор включает в себя специализированную интегральную микросхему – широтно-импульсный генератор.

Из недостатков бестрансформаторных устройств главным является то, что они не имеют гальванической развязки с питающей сетью и могут представлять опасность удара электрическим током. Также они обычно имеют небольшую мощность и выдают только 1 значение выходного напряжения.

Более распространены трансформаторные устройства, в которых высокочастотная последовательность импульсов поступает на первичную обмотку трансформатора. Вторичных обмоток может быть сколько угодно много, что позволяет формировать несколько выходных напряжений. Каждая вторичная обмотка нагружена на собственный выпрямитель и сглаживающий фильтр.

Мощный импульсный блок питания любого компьютера построен по такой схеме, которая имеет высокую надежность и безопасность. Для сигнала обратной связи здесь используется напряжение 5 или 12 Вольт, поскольку эти значения требуют максимально точной стабилизации.

Использование трансформаторов для преобразования напряжения высокой частоты (десятки килогерц вместо 50 Гц) позволило многократно снизить их габариты и массу и использовать в качестве материала сердечника (магнитопровода) не электротехническое железо, а ферромагнитные материалы с высокой коэрцитивной силой.

На основе широтно-импульсной модуляции построены также преобразователи постоянного тока. Без использования инверторных схем преобразование было связано с большими трудностями.

Схема БП

В схему самой распространенной конфигурации импульсного преобразователя входят:

  • сетевой помехоподавляющий фильтр;
  • выпрямитель;
  • сглаживающий фильтр;
  • широтно-импульсный преобразователь;
  • ключевые транзисторы;
  • выходной высокочастотный трансформатор;
  • выходные выпрямители;
  • выходные индивидуальные и групповые фильтры.

Назначение помехоподавляющего фильтра состоит в задерживании помех от работы устройства в питающую сеть. Коммутация мощных полупроводниковых элементов может сопровождаться созданием кратковременных импульсов в широком спектре частот. Поэтому здесь необходимо в качестве проходных конденсаторов фильтрующих звеньев использовать разработанные специально для этой цели элементы.

Выпрямитель служит для преобразования входного переменного напряжения в постоянное, а установленный следом сглаживающий фильтр устраняет пульсации выпрямленного напряжения.

В том случае когда используется преобразователь постоянного напряжения, выпрямитель и фильтр становятся ненужными, и входной сигнал, пройдя цепи помехоподавляющего фильтра, подается непосредственно на широтно-импульсный преобразователь (модулятор), сокращенно ШИМ.

ШИМ является самой сложной частью схемы импульсного источника питания. В его задачу входят:

  • генерация высокочастотных импульсов;
  • контроль выходных параметров блока и коррекция импульсной последовательности в соответствии с сигналом обратной связи;
  • контроль и защита от перегрузок.
Читайте также:  Как заменить аккумулятор в автомобиле - порядок замены

Сигнал с ШИМ подается на управляющие выводы мощных ключевых транзисторов, включенных по мостовой или полумостовой схеме. Силовые выводы транзисторов нагружены на первичную обмотку выходного трансформатора высокой частоты. Вместо традиционных биполярных транзисторов используются IGBT- или MOSFET-транзисторы, которые отличаются малым падением напряжения на переходах и высоким быстродействием. Улучшенные параметры транзисторов способствуют уменьшению рассеиваемой мощности при одинаковых габаритах и технических параметрах конструкции.

Выходной импульсный трансформатор использует одинаковый с классическим принцип преобразования. Исключением является работа на повышенной частоте. Как следствие, высокочастотные трансформаторы при одинаковых передаваемых мощностях имеют меньшие габариты.

Напряжение со вторичной обмотки силового трансформатора (их может быть несколько) поступает на выходные выпрямители. В отличие от входного выпрямителя, диоды выпрямителя вторичной цепи должны иметь повышенную рабочую частоту. Наилучшим образом на данном участке схемы работают диоды Шоттки. Их преимущества перед обычными:

  • высокая рабочая частота;
  • сниженная емкость p-n перехода;
  • малое падение напряжения.

Назначение выходного фильтра импульсного блока питания – снижение до необходимого минимума пульсаций выпрямленного выходного напряжения. Поскольку частота пульсаций намного выше, чем у сетевого напряжения, то нет необходимости в больших значениях емкости конденсаторов и индуктивности у катушек.

Сфера применения импульсного блока питания

Импульсные преобразователи напряжения применяются в большинстве случаев вместо традиционных трансформаторных с полупроводниковыми стабилизаторами. При одинаковой мощности инверторы отличаются меньшими габаритными размерами и массой, высокой надежностью, а главное – более высоким КПД и возможностью работать в широком диапазоне входного напряжения. А при сравнимых габаритах максимальная мощность инвертора в несколько раз выше.

В такой области, как преобразование постоянного напряжения, импульсные источники практически не имеют альтернативной замены и способны работать не только по понижению напряжения, но и вырабатывать повышенное, организовывать смену полярности. Высокая частота преобразования существенно облегчает фильтрацию и стабилизацию выходных параметров.

Читайте также:  Преобразователи напряжения с 12 на 220 вольт

Малогабаритные инверторы на специализированных интегральных микросхемах используются в качестве зарядных устройств всевозможных гаджетов, а их надежность такова, что срок службы зарядного блока может превосходить время работоспособности мобильного устройства в несколько раз.

Драйверы питания на 12 Вольт для включения светодиодных источников освещения также построены по импульсной схеме.

Как сделать импульсный блок питания своими руками

Инверторы, особенно мощные, имеют сложную схемотехнику и доступны для повторения только опытным радиолюбителям. Для самостоятельной сборки сетевых источников питания можно рекомендовать несложные маломощные схемы с использованием специализированных микросхем ШИМ-контроллеров. Такие ИМС имеют малое количество элементов обвязки и имеют отработанные типовые схемы включения, которые практически не требуют регулировки и настройки.

При работе с самодельными конструкциями или ремонте промышленных устройств необходимо помнить, что часть схемы всегда будет находиться под потенциалом сети, поэтому требуется соблюдать меры безопасности.

Инверторный Блок питания или пускач для авто

Когда автомобиль долгое время стоит без дела, нужно его хотя бы раз в месяц заводить. Аккумуляторная батарея хорошо снабжает электричеством автомобиль на протяжении 4-5 лет, затем она не в состоянии нормально обеспечивать электричеством машину, а также плохо заряжается от генератора или портативного зарядного устройства. После большого опыта сборки сварочных инверторов, у меня появилась идея сделать на основе таких аппаратов устройство для запуска двигателя.

Это устройство можно использовать как с установленным аккумулятором, так и без него. С аккумуляторной батареей инверторному блоку питания будет даже легче заводить двигатель. Я пытался завести без батареи двигатель на 88 лошадиных сил. Эксперимент удался, без каких либо поломок.

На инверторе нужно настроить выходное напряжение 11,2 В. Стартер двигателя внутреннего сгорания, рассчитан на такое напряжение (10-11 В). Инверторный блок питания, который мы собираем имеет возможность стабилизации напряжения, а также функцию защиты от максимальных токов 224 А, защиту от замыкания электропроводки.

Технология IGBT, по которой разрабатывалась электрическая схема устройства, основана на принципе полного открытия и полного закрытия мощных транзисторов, которые используются в блоке. Это дает возможность как нельзя лучше минимизировать потери на ключах IGBT.

На выходе имеется возможность регулировать силу тока и напряжение за счет изменения ширины импульсов управления силовыми ключами. Так как они работают на высоких частотах, то и регулировку нужно осуществлять на частоте 56 кГц. Такая идеализация работы возможна лишь при стабильной частоте на выходе, а также удержание ее на таких уровнях, при которых действует блок питания. В таком случае будет, изменятся, только ширина и длительность напряжения в диапазоне (0% — 45%), от ширины импульса. Остальные 55% — это нулевой уровень напряжения на ключе управления.

Трансформатор инверторного блока имеет ферритовый сердечник. Это дает возможность подстраивать прибор на высокой частоте 56 кГц. На металлическом сердечнике не создаются вихревые токи.

IGBT транзисторы — обладают необходимой мощностью, а также не создают вокруг себя вихревых полей. Зачем же нужно создавать такие высокие частоты в блоке питания? Ответ очевиден. При использовании трансформатора, чем выше частота напряжения, тем меньше нужно витков обмотки на сердечнике. Еще одним плюсом высокой частоты работы, высокого КПД трансформатора, который в данном случае становит 95%, так как обмотки сердечника выполнены из толстого провода.

Трансформаторное устройство, используемое в схеме маленькое по габаритам и очень легкое. Широтное импульсное устройство (ШИМ) — создает меньше потерь, стабилизируя напряжение, в сравнении с аналоговыми элементами стабилизации. В последнем случае мощность рассеивается на мощных транзисторах.

Те люди, которые разбираются немного в радиоэлектронике, могут заметить, что трансформатор подключается к источнику питания во время тактов двумя ключами. Один подсоединяется к плюсу, другой к минусу. Электрическая схема построения по принципу Фли Бак предусматривает подключение трансформатора с одним ключом.  Такое подключение приводит к большим потерям мощности (составляет в общей сложности порядка 10-15 % от полной мощности), так как индуктивные обмотки рассеивают энергию на резисторе. Такие потери мощности недопустимы для построения мощных источников питания в несколько киловатт.

В приведенной схеме такой недочет устранен. Выброс энергий уходит через диоды VD18 и VD19 обратно в питание моста, что в свою очередь еще больше повышает КПД трансформатора.

Потери на дополнительном ключе становят не более 40 Ватт. Схема Фли Бак предусматривает такие потери на резисторе, которые ставят 300-200 Ватт. Транзистор IRG64PC50W, который применяется в электрической схеме блока питания по технологии IGBT, имеет особенность быстрого открытия. В то же время скорость го закрытия намного хуже, что производит к импульсному нагреву кристалла в момент закрытия транзистора. На стенках транзистора выделяется около 1 кВт энергии в виде тепла. Такая мощность очень большая для транзистора, что чревато перегревом.

Для снижения этой мгновенной мощности между коллектором и эмиттером транзистора включают дополнительную цепь С16 R24 VD31. Тоже самое было сделано и с верхними IGBT транзистора, которая снижает мощность на кристалле в момент закрытия. Такое внедрение приводит до повышения мощности в момент открытия ключа транзистора. Но оно происходит практически мгновенно.

В момент открытия IGBT конденсатор С16 разряжается через резистор R24. Зарядка происходит в момент закрытия транзистора через быстрый диод VD3. Как следствие этого, затягивается формат подъема напряжения. Пока закрывается IGBT – снижается выделяемая мощность на ключе транзистора.

Такое изменение электрической цепи отлично справляется с резонирующими выбросами трансформатора, тем самым не позволяя напряжению выше 600 вольт через ключ.

IGBT – это составной трансформатор, который состоит из полевого и биполярного транзистора с переходом. Полевой транзистор выступает тут в качестве главного. Для того, чтобы им управлять требуются прямоугольные импульсы с амплитудой не меньше 12 В, а также не больше 18 В. На этом участке цепи включены специальные оптроны (HCPL3120 или HCPL3180). Возможная импульсная рабочая нагрузка составляет 2 А.

Оптрон работает таким образом. В том случае, когда появится напряжение на светодиоде оптрона, входы 1,2,3 и 4 – запитаны. На выходе мгновенно формируется мощный импульс тока с амплитудой 15,8 В. Уровень импульса ограничен резисторами R55 и R48.

Когда напряжение на светодиоде пропадает, наблюдается спад амплитуды, который открывает транзистор Т2 и Т4. Таким образом создается ток более высокого уровня на резисторах R48 и R58, а также происходит быстрая разрядка конденсатора ключа IGBT.

Мост вместе с драйверами на оптронах собираем на базе радиатора от компьютера Pentium 4, у которого плоское основание. На поверхность радиатора перед установкой транзисторов необходимо нанести термопасту.

Радиатор нужно распилить на две части таким образом, чтобы верхний и нижний ключ не имели электрического контакта между собой. Диоды крепятся к радиатору специальными слюдяными прокладками. Все силовые соединения устанавливаем с помощью применения навесного монтажа. На шину питания понадобится припаять 8 штук пленочных конденсаторов по 150 нФ каждый и максимальным напряжением 630 В.

Выходная обмотка силового трансформатора и дроссель

Так как выходные напряжения без нагрузки достигают 50 В, его нужно необходимо было выпрямить с помощью диодов VD19 и VD20. Затем нагрузочное напряжение поступает на дроссель с помощью которого происходит сглаживание и деление напряжения пополам.

Во время когда IGBT транзисторы открыты наступает фаза насыщения дросселя L3. Когда IGBT находится в закрытом состоянии, наступает фаза разрядки дросселя. Разрядка происходит через замыкающий цепь диод VD22  и VD21. Таким образом ток который поступает на конденсатор выпрямляется.

Стабилизация и ограничение тока при широтноимпульсной модуляции

Устройство, о котором далее пойдет речь – мозг блока питания ИС2845. Он создает рабочий такт с измененяемой шириной импульса, в зависимости от входного напряжения в точках входа 1 и 2, а также тока на входе 3.

2 – это вход для усиления напряжения, 1 – выход усилителя. Усилитель изменяет рабочий ток инвертора, а также ширину импульса. Дискретные изменения создают нагрузочную характеристику в зависимости от напряжения обратной связи между блоком питания и входом микросхемы. На выводе 2 микросхемы поддерживается напряжение 2,5 В.

Ширина рабочего импульса зависит от напряжения на входе 2 микросхемы. Ширина импульса становится шире, если напряжение больше 2,5 В. Если же напряжение меньше указанного, то ширина зауживается.

Стабильность работы блока питания зависит от резисторов R2 и R1. Если напряжение сильно проседает вследствие больших выходных токов, то необходимо увеличить сопротивление резистора R1.

Иногда бывает, что в процессе настройки блок начинает издавать некие жужжащие звуки. В таком случае необходимо регулировать резистор R1 и емкости конденсаторов С1 и С2. Если даже такие меры не в состоянии помочь, можно попробовать уменьшить количество витков дросселя С3.

Трансформатор должен работать тихо, иначе сгорят транзисторы. Если даже все вышеперечисленный меры не помогли, нужно добавить несколько конденсаторов по 1 мкФ на три канала БП.

Плата силовых конденсаторов 1320 мкФ

Во время включения блока питания в сеть с напряжением 220 В, происходит скачок тока, после чего выходят из строя диодная сборка VD8, во время зарядки емкости конденсатора. Для предотвращения такого эффекта нужно установить резистор R11. Когда конденсаторы зарядятся, таймер на нулевом транзисторе даст команду сомкнуть контакты и зашунтировать реле. Теперь нужный по величине рабочий ток поступает на электрический мост с трансформатором.

Таймер на VT1 размыкает контакты реле К2, что позволяет использовать процесс широтноимпульсной модуляции.

Настройка блока

Первым делом необходимо подать напряжение в 15 В на силовой мост, проследить правильную работы моста а также монтаж элементов. Далее можно запитать мост напряжением сети, в разрыв между +310 В, где расположены конденсаторы 1320 мкФ и конденсатор с емкостью 150 нФ, поставить лампочку на 150-200 Ватт. Затем подключаем к электрической цепи осфилограф на коллектор-эмиттер нижнего силового ключа. Нужно убедится, что выбросы расположены в нормальной зоне, не выше 330 В. Далее выставляем тактовую частоту ШИМа. Нужно понижать частоту до тех пор, пока не появится на осциллограмме маленький изгиб импульса, который свидетельствует о перенасыщении трансформатора.

Рабочая тактовая частота трансформатора рассчитывается таким образом: сначала измеряем тактовую частоту перенасыщения трансформатора, делим ее на 2 и результат прибавляем к частоте, на которой произошел изгиб импульса.

Затем нужно запитать мост через чайник, мощностью 2 кВт. Отсоединяем обратную связь ШИМ по напряжению, подаем регулируемое напряжение на резистор R2 в месте соединения его с стабилитроном D4 от 5 В до 0, тем самым регулируя ток замыкания от 30 А и до 200 А.

Настраиваем напряжение на минимум, ближе к 5 В, отпаиваем конденсатор С23, замыкаем выход блока. Если вы услышали звон, необходимо пропустить провод в другую сторону. Проверяем фазировку обмоток силового трансформатора. Подключаем осциллограф на нижний ключ и увеличиваем нагрузку, чтобы не было звона, или даже всплеска напряжения выше 400 В.

Измеряем температуру радиатора моста, чтобы радиатор нагревался равномерно, что свидетельствует о качественных мостах. Подключаем обратную связь по напряжению. Ставим конденсатор С23, измеряем напряжение, чтобы оно находилось в пределах 11-11,2 В. Нагружаем источник питания небольшой нагрузкой, величиной в 40 Ватт.

Настраиваем тихую работу трансформатора, изменяя количество витков дросселя L3. Если и это не помогает, увеличиваем эмкость конденсатора С1 и С2, или же размещаем плату ШИМ подальше от помех силового трансформатора.

СКАЧАТЬ…печатные платы в формате LAY


Смотрите также