Дроссель для люминесцентных ламп что это такое


Дроссель для люминесцентных ламп: назначение и схема подключения люминесцентной лампы с дросселем

Люминесцентные лампы (лампы дневного цвета), которые широко используются и на производствах, и в общественных учреждениях, и в быту не могут подключаться в электросеть так же просто, как и лампы накаливания. Для обеспечения их пуска и работы существуют специальные устройства, одним из которых является дроссель для люминесцентных ламп. О нем и пойдет речь.

Дроссель для люминесцентных ламп

Дроссель для люминесцентных ламп

Независимо от победоносного «наступления» светодиодных ламп ведут, еще очень большое количество светильников с люминесцентными лампами будут работать, пока не выработают свой ресурс. Вдобавок на складах есть хороший запас ламп на смену вышедшим из строя. Скорее всего, переход на полностью светодиодное освещение займет не один десяток лет. И тема эксплуатации и ремонта светильников с газоразрядными ртутными лампами низкого давления (ГРЛНД – именно так по-научному называются люминесцентные лампы) будет еще актуальной очень долго.

Как происходит запуск и работа люминесцентных ламп при помощи дросселя

Для того чтобы понять для чего нужен дроссель стоит кратко рассмотреть устройство люминесцентной лампы, самый распространенный вид которой – это линейная люминесцентная лампа цилиндрической формы. Устройство люминесцентной лампы показано на следующем рисунке

Устройство люминесцентной лампы

Линейная люминесцентная лампа – это герметичный цилиндр из тонкого стекла (1) из которого выкачан воздух и закачан инертный газ (чаще всего это аргон) или смесь газов под давлением примерно 400 Па, что в 250 раз меньше атмосферного давления. Именно из-за сниженного давления лампа разбивается с характерным хлопком. Кроме этого, в колбу лампы строго дозировано помещено некоторое количество ртути, которая при таком разрежении находится преимущественно в газообразном виде.

На торцах трубки есть стеклянные ножки (2) в которые вплавлены электроды (3) – по два с каждой из сторон. Между электродами размещается вольфрамовая спираль, которая покрыта специальным химическим соединением – сочетанием оксидов бария, стронция и кальция (BaO, SrO и CaO) и тугоплавкой присадки на основе циркония (ZrO₂ или MgZrO₃). При нагреве этого состава свободные электроны разгоняются до таких скоростей, что способны покинуть кристаллическую решетку и «выпрыгнуть» в окружающее пространство. Такое явление называют термоэлектронной эмиссией, и оно широко используется как в люминесцентных лампах, так и в вакуумных электронных лампах.

На концах трубки сделаны цоколи (5) с контактными штырьками (4) с помощью которых лампа подключается в светильнике. На внутреннюю поверхность колбы лампы нанесен люминофор (9) — галофосфаты кальция или ортофосфаты кальция-цинка. Если люминофор облучать ультрафиолетовым (невидимым для глаз и вредным) излучением, то он начинает излучать свет уже в видимом диапазоне. Именно от состава люминофора и зависит цветовая температура, спектр и цветопередача люминесцентной лампы.

Чтобы понять роль дросселя для люминесцентных ламп, надо посмотреть, как он устроен. Его еще могут называть балластом или ЭмПРА (электромагнитный пускорегулирующий аппарат). Конструктивно дроссель – это катушка индуктивности, намотанная на сердечнике из ферромагнитных сплавов. Он замкнутый подобный трансформаторному, но только с одной обмоткой, выполненной медным эмаль-проводом. Следующий рисунок наглядно показывает «внутренний мир» дросселя для люминесцентных ламп.

Электромагнитный дроссель для люминесцентных ламп после «вскрытия»

Сердечник дросселя не цельный, а набран из отдельных пластин. Это сделано для того, чтобы в нем не возникали под действием переменного магнитного поля вихревые токи Фуко, которые способны сильно разогреть и даже при определенных условиях расплавить металл. Рассмотрим, как подключается люминесцентная лампа, какие происходят процессы при ее запуске и горении и узнаем про роль дросселя в них.

Схема №1: Подключение одной люминесцентной лампы

Как видно из представленной принципиальной схемы дроссель подключается последовательно лампе. Параллельно лампе подключен стартер с конденсатором C2, а параллельно питающему напряжению также подключен конденсатор C1. Что происходит, когда на такую схему подают сетевое напряжение 220 В?

  • Лампа в «холодном» состоянии не имеет в составе газов свободных зарядов, поэтому имеет очень высокое сопротивление. Поэтому, когда подают напряжение, ток через лампу не течет, а он начинает протекать по цепи стартера.

Устройство стартера для люминесцентных ламп

  • Стартер представляет собой небольшую неоновую лампу (3), в колбе которой находятся пара электродов – один неподвижный (2), а другой подвижный (1) в виде биметаллической пластины. При нагреве она будет изгибаться и приходить в контакт с неподвижным электродом. Каждая из люминесцентных ламп должна иметь свой стартер, подключаемый ей параллельно. Если светильник двухламповый, то он может иметь один дроссель, но стартер индивидуален для каждой. Двухламповый светильник подключают по следующей схеме.

Схема №2: Подключение двух ламп в светильнике с одним электромагнитным дросселем

  • Из данной схемы видно, что дроссель имеет мощность – не менее, чем сумма мощностей люминесцентных ламп, а стартеры рассчитаны на напряжение не 220 В, а на 127 В, так как лампы включены последовательно. Очень распространенная ошибка при монтаже люминесцентных светильников – это включение не соответствующего стартера. Рабочее напряжение и мощность подключаемых ламп всегда указывается на корпусе стартера.

Вся необходимая информация присутствует в маркировке стартеров

  • При подключении люминесцентного светильника к сети ток начинает протекать через дроссель, далее через одну из спиралей катода лампы, затем через тлеющий разряд стартера, потом через спираль другого катода лампа и далее уходить в сеть. Величина силы тока в этом случае небольшая (примерно 30—50 мА). Этого недостаточно для разогрева спиралей катодов, но вполне хватает для поддержания тлеющего разряда стартера, который будет подогревать электроды.
  • Биметаллический электрод в стартере от нагрева изгибается, приходит в контакт с неподвижным электродом. Ток в цепи резко возрастает до примерно 600 мА, так как он будет определяться только сопротивлением дросселя и спиралей катодов лампы. Тлеющий разряд в колбе стартера гаснет и электроды остывают, так как сопротивление контакта ничтожное. Возросший ток приведет к тому, что спирали в лампе нагреются (за 1—2 секунды до 800 °С), при этом интенсивно испуская электроны из-за явления термоэлектронной эмиссии. В результате возле катодов лампы образуется «электронный газ», который будет способствовать пробою и зажиганию разряда.
  • После остывания электродов в колбе стартера биметаллический электрод размыкается и здесь начинается самое интересное. Благодаря явлению самоиндукции при разрыве цепи в дросселе наводится ЭДС (электродвижущая сила) самоиндукции, которая препятствует уменьшению тока в цепи. Причем наводимая ЭДС совпадает по фазе с ЭДС сети, что приводит к резонансному ее скачку до значений выше 1 тысячи вольт, а это вызывает «пробой» газа в колбе лампы и зажигание дуги.

Графическое отображение появления «всплеска» ЭДС самоиндукции в дросселе в момент размыкания электрической цепи

  • Высоковольтный импульс возникшей ЭДС самоиндукции очень непродолжителен по времени, которого может не хватить на запуск лампы. Кроме этого, этот импульс может спровоцировать искровой дуговой разряд в стартере. Для предотвращения этого параллельно лампе стартера установлен конденсатор (C2 на первой схеме). Другой его задачей является увеличение временного промежутка действия ЭДС самоиндукции. Конденсатор, заряжаясь проводит переменный электрический ток, а напряжение на его пластинах возрастает постепенно. Как только напряжение на электродах конденсатора достигнет определенного порогового значения – происходит возникновение дугового разряда в лампе, но искрения электродов стартера при этом не будет.
  • Возле катодов лампы присутствуют эмитированные при разогреве спиралей электроны. Когда на лампе появляется повышенное напряжение, электроны приходят в движение, разгоняются до больших скоростей и при столкновении с атомами инертного газа «выбивают» с внешней орбиты электроны. Образуется большое количество электронов и положительно заряженных ионов инертного газа. Этот процесс ударной электронной ионизации лавинообразно нарастает и в колбе лампы начинает протекать переменный электрический ток.

Процессы, происходящие внутри люминесцентной лампы

  • Разогнанные электроны сталкиваются в том числе и с атомами ртути, при этом происходит их «возбуждение». Электроны с внутренних орбит после получения «порции» кинетической энергии от «бомбардировки» переходят на внешние орбиты. Но в таком состоянии атом не может существовать долго, поэтому электроны возвращаются на свои «родные» орбиты, но при этом выделяют энергию в виде квантов ультрафиолетового излучения, которые облучают люминофор, а он уже излучает свет в видимом диапазоне.
  • С появлением электрического разряда в колбе лампы резко падает ее электрическое сопротивление. Если этот процесс оставить бесконтрольным, то это приведет к росту тока до недопустимых величин. Ток ограничивает именно дроссель, который имеет и активное (оно незначительное) и реактивное сопротивление. Так как сопротивление лампы падает, то падение напряжения на ней будет недостаточное для того, чтобы в стартере зажегся тлеющий разряд. Специалисты говорят, что лампа шунтирует стартер. Поэтому во время работы исправной лампы он бездействует.
  • Конденсатор C1, подключенный параллельно питающему напряжению, служит для того, чтобы компенсировать реактивную мощность дросселя, так как ток отстает по фазе от напряжения на определенную величину, характеризуемую коэффициентом мощности (cosφ), который указывается на дросселе. О правилах подбора конденсатора C1 мы расскажем ниже.

Сдвиг фазы тока в электромагнитном дросселе на угол φ

  • Если отключить напряжение питания на светильнике, то разряд в лампе погаснет, все ионизированные атомы опять обретут свои электроны и станут нейтральными – произойдет рекомбинация. Сопротивление в колбе лампы опять вырастет и для ее запуска опять нужно задействовать стартер и дроссель.
Видео: Принцип работы люминесцентной лампы

Достоинства и недостатки электромагнитных дросселей для люминесцентных ламп

Электромагнитные дроссели самыми первыми стали использоваться совместно с люминесцентными лампами. Применяются они и до сих пор. Преимуществами ЭмПРА (балластов) являются:

  • Простота конструкции дросселя и его подключения.
  • Высокая надежность в случае применения с соответствующими лампами.
  • Долговечность – срок службы дросселя составляет не менее 10 лет. В старых светильниках некоторые дроссели работают уже по 40—50 лет.
  • Низкая цена, которая является следствием простоты конструкции.

Эот дроссель 1974 года выпуска до сих пор находится в исправном состоянии

Однако, электромагнитные дроссели не лишены и недостатков. К ним можно причислить:

  • Продолжительный по времени процесс запуска лампы. Он составляет примерно 1—10 сек и зависит от степени износа лампы.
  • ЭмПРА сам является потребителем энергии, так как ее часть тратится на разогрев. Потери могут составлять 15—20%. Дроссель может нагреваться до 100°C и выше, что делает его пожароопасным.
  • Небольшой коэффициент мощности (cosφ), который без компенсирующих конденсаторов находится в пределах 0,35—0,50. Это очень мало.
  • Дроссели при работе могут издавать низкочастотный гул дискомфортный для слуха. Особенно это касается низкокачественных и старых ЭмПРА.
  • При работе с электромагнитным дросселем лампы мигают с частотой 100 Гц. Это утомляет зрение и опасно для освещения движущихся механизмов, так как стробоскопический эффект может создать иллюзию их неподвижности.
  • Дроссель хоть и способен сглаживать пульсации напряжения в сети, но только незначительные. При нестабильном напряжении возможно мерцание лампы и повышенная шумность дросселя.
  • Лампы, работающие с ЭмПРА, изнашиваются скорее, чем с современными электронными устройствами запуска.
  • Дроссели имеют большие габариты и значительную массу (до нескольких килограмм).
  • При низких температурах светильники со стартерно-дроссельной схемой подключения могут не зажигаться. Это ограничивает их применение в уличном освещении.

Современные схемы включения люминесцентных ламп предполагают применение электронного балласта, называемого также ЭПРА, что означает Электронный Пускорегулирующий Аппарат. Качественный ЭПРА лишен всех недостатков, характерных для ЭмПРА, но имеет единственный – высокую цену. Этому устройству обязательно будет посвящена отдельная статья на нашем портале.

Как подбирать электромагнитный дроссель

Естественно к какой-то определенной люминесцентной лампе не может подключаться любой дроссель, его надо подбирать по следующим характеристикам:

  • Рабочее напряжение и частота. Для наших электросетей нас должны интересовать дроссели с напряжением 220—240 В и частотой 50 Гц.
  • Мощность дросселя, которая должна соответствовать мощности лампы. Если к ЭмПРА будет подключаться две лампы по Схеме 2, то мощность дросселя должна соответствовать сумме мощностей ламп. Это всегда указывается на маркировке дросселя и чаще всего указывается как типы и количество ламп, так и приведены принципиальные схемы подключения.
  • Ток лампы или группы ламп, который протекает в том числе и через дроссель. Он указывается в Амперах на корпусе дросселя.
  • Коэффициент мощности, который может обозначаться или cosφ, или греческой буквой λ (лямбда). Чем он больше – тем лучше, но в ЭмПРА он редко превышает порог в 0,5, поэтому однозначно требуется конденсаторная компенсация.
  • Превышение температуры дросселя над окружающей температурой Δt(°C) и максимальная температура ЭмПРА, которая при длительной работе не приведет к перегреву и выходу из строя. Эти два показателя регламентируются европейскими нормами EN На дросселе указываются в виде дроби, где в числителе Δt(°C), а в знаменателе максимальная температура.
  • Энергетическая эффективность ПРА, обозначаемая индексом EEI (Energy Efficiency Index), который разделен на 7 классов: A1, A2, A3, B1, B2, C, D. Этот показатель характеризует уровень рассеиваемой мощности на дросселе. Самая малая – классы A1— A3 (A1 – это регулируемые ЭПРА), которые «отданы» электронным ПРА. Средняя – это B1 и B2, и высокая – C, D, которые, кстати, уже запрещены в Европе. Градацию по классам можно увидеть в таблице.

Мощность лампы, Вт

Потребляемая мощность (лампа+ПРА) в соответствии с классом, Вт

A1A2A3B1B2CD
1591618212325>25
1810.51921242628>28
3016.53133363840>40
36193638414345>45
38203840434547>47
5829.55559646770>70
70366872778083>83

  • Параметры конденсатора, компенсирующего реактивную мощность электромагнитного дросселя. Здесь указывается рабочее напряжение и емкость конденсатора, подключаемого параллельно напряжению питающей сети.

Вся необходимая техническая информация есть в маркировке дросселя

Вся необходимая информация почти всегда указана в маркировке дросселя. Кроме этого, производители светотехнического оборудования публикуют на своих сайтах всю необходимую информацию, которая поможет правильно сочетать люминесцентную лампу (или две лампы) с ЭмПРА. Приведем пример из каталога известного производителя электрооборудования – финской компании Helvar, где указаны рекомендуемые дроссели к лампам T8 различной мощности. Лампы Т8 – являются самыми распространенными, они имеют диаметр колбы 26 мм, а на их цоколе G13 контактные штырьки расположены на расстоянии 13 мм друг от друга. В столбце «Схема №» идет ссылка на выше рассмотренные нами схемы подключения одной или двух люминесцентных ламп через один дроссель.

Электромагнитные дроссели для T8 ламп Helvar, 220 В, 50 Гц, 15-58 Вт

Мощн. (Вт)*К-во лампТок лампы, (A)Тип ЭмПРА  Класс EEIРазмеры Д*Ш*В, (мм)Масса, (кг)Схема №cosφРост темп. Δt(°C)Емкость компенс. конденс, 230/250В, (мкф)
15*10.31L15A-PB2150*42*280.5510.3550/854
15*20.31L30A-PB2150*42*280.5620.545/1104.5
18*10.37L18TL2B1150*42*28,80.8310.335/504.5
18*10.37L20A-PC150*42*280.5610.3555/854.5
18*10.37L18A-LC150*42*280.5110.3565/904.5
18*20.37L36TL2B1150*42*28,80.8320.5335/904.5
18*20.37L40A-CC150*42*280.5220.5355/1504.5
18*20.37L40A-PC150*42*280.5620.5355/1554.5
18*20.37L40A-LC150*42*280.5120.5565/1604.5
25*10.29L15A-PB2150*42*280.5510.550/853.5
30*10.365L30A-PB2150*42*280.5610.545/1104.5
36*10.43L36TL2B1150*42*28,80.8310.4335/904.5
36*10.43L40 A-CC150*42*280.5210.555/1504.5
36*10.43L40A-PC150*42*280.5610.555/1554.5
36*10.43L40A-LD150*42*280.5110.565/1604.5
38*10.43L36TL2B1150*42*28,80.8310.4535/904.5
38*10.43L40A-PC150*42*280.5610.4955/1554.5
38*10.43L40A-LD150*42*280.5110.4965/1604.5
58*10.67L58TL2B2230*42*28,81.3610.4735/957

Светильники для люминесцентных ламп всегда уже продаются оборудованными под конкретные типы ламп, а дроссель идет в комплектации по умолчанию. В случае выхода из строя ЭмПРА можно легко купить новый, с такими же характеристиками. Выбирать лучше дроссели известных брендов: Helvar, Vossloh-Schwabe, Philips, Osram, Tridonik, HEP, ELT и другие. Продукцию No Name лучше игнорировать. В настоящее время очень велико предложение качественных ЭмПРА бывших в употреблении. Это происходит на фоне массового внедрения светодиодных ламп того же форм-фактора, что и люминесцентных. «Модернизация» светильников при этом выглядит как установка одной перемычки и «выкидывание» стартера и ПРА – они в LED лампах не нужны.

Типичные неполадки дросселя их диагностика и устранение

Причин неисправности светильников люминесцентных ламп может быть много, но как узнать какая именно деталь подлежит замене. Причем сделать это в домашних условиях без применения специального инструмента и аппаратуры? На самом деле это очень просто, понадобятся набор отверток с изолированными ручками, нож монтажный, кусачки, пассатижи, мультиметр, индикаторная отвертка, съемник изоляции (опционально) и моток медного провода ПВ-1 поперечным сечением 0,75—1,5 мм² (примерно 2-3 метра). Кроме этого желательно сразу иметь заведомо исправный стартер, лампу и дроссель тех же номиналов, что и в проверяемом светильнике. Благо, что стоят они «сущие копейки» и продаются в любом магазине электротоваров.

Какая «симптоматика болезней» может быть у люминесцентных светильников?

  • Лампа не включается вообще и при этом никак не реагирует стартер и вольфрамовые спирали лампы. Такая неисправность может быть обусловлена как дросселем, так и лампой, и стартером или проблемой с коммутацией в светильнике. Для выявления проблемного элемента вначале меняется стартер, затем лампа. Если это не приносит никаких результатов, то после проверки коммутации проводов в светильнике и надежности контактов можно делать вывод о неисправности дросселя.
  • Внутри лампы наблюдается разряд в виде огненной змейки, которая постоянно перемещается. Такой эффект происходит из-за возрастания тока до недопустимых величин из-за чего стабильность разряда нарушается. Это однозначно говорит о неисправности дросселя или применении к лампе ЭмПРА несоответствующей мощности. Лампа и дроссель в таком режиме не прослужат долго.
  • Неустойчивое свечение или мерцание лампы быстро выведут ее из строя. «Слабым звеном» в этой ситуации может быть и лампа, и стартер, и дроссель. Если после замены лампы и стартера на заведомо исправные это явление не прекратилось – то «виноват» дроссель. Частое включение или отключение лампы приводит к быстрой деградации вольфрамовых спиралей и визуально это определяется как почернения на концах лампы.

Явный признак «начала конца» лампы — почернение в районе катодов

Для проверки дросселя без каких-либо приборов можно собрать самостоятельно простой испытательный стенд по такой схеме.

Простой стенд для проверки стартеров и дросселей сможет собрать любой домашний мастер

Лампу следует выбирать мощностью максимально близкой к мощности дросселя. После подключения такой конструкции к розетке могут наблюдаться такие явления:

  • Лампа не загорается вообще. Это явно свидетельствует о неисправности дросселя. Скорее всего, в нем обрыв.
  • Лампа загорается и горит очень ярко. Такое «поведение» лампы говорит о том, что сопротивление дросселя ниже паспортного вследствие межвиткового замыкания.
  • Лампа светит вполнакала или моргает при срабатываниях стартера. Это самый лучший случай, говорящий об исправном дросселе.
Видео: Проверка дросселя лампы дневного света

Дроссель можно проверить и без сборки стенда, но используя мультиметр, который надо настроить для проверки сопротивления в Омах. Этот способ удобен при покупке нового ЭмПРА в магазине. Повреждения дросселя могут быть разными:

Обрыв обмоток

Наиболее неприятная неисправность диагностируется легче всего. Обрыв может произойти по причине перегорания эмаль-провода обмотки ЭмПРА из-за недопустимо высоких токов или механического повреждения. Для того, чтобы проверить дроссель на обрыв надо:

  • Включить мультиметр и перевести его в режим измерения сопротивления (желательно в Омах).
  • Взять щупы и приложить их к клеммам дросселя. При этом недопустимо касаться щупов пальцами.
  • Если мультиметр показывает бесконечное сопротивление, то это однозначно говорит об обрыве.

Проверка обрыва обмоток дросселя

Обрыв может быть не в самой обмотке, а у клеммы дросселя, к которой припаяны два вывода эмаль-провода. Пайка может быть некачественной (холодной) и со временем отвалиться. Если это так, то можно аккуратно припаять эмаль провод паяльником мощностью не более 25 Ватт и восстановить работоспособность ЭмПРА. Если обрыв произошел внутри дросселя, то его перемотка – это довольно сомнительное по вложению труда и экономической целесообразности занятие при цене нового в 150—200 рублей (не нового 50—100 рублей). Лучший выход из такой ситуации – замена.

Замыкание обмоток

Некоторые схемы подключения люминесцентных ламп предполагают использование двух дросселей, которые собраны в одном корпусе. При этом две обмотки намотаны на одном сердечнике, что делает дроссель уже трансформатором. Обмотки «общаются» между собой только через магнитный поток, который они сами генерируют, но гальванически они должны быть полностью изолированными друг от друга.

Варианты подключения люминесцентных ламп. В схеме III применены сдвоенные дроссели L1 и L2

Бывают случаи, когда происходит пробой изоляции обмоток, что приводит к их гальваническому контакту. Это нарушает режимы работы, либо исключает вообще способность лампы зажигаться и гореть. Для проверки таких сдвоенных дросселей, которые являются редкостью, также надо использовать мультиметр. При этом последовательность действий такова:

  • Мультиметр включается и устанавливается на измерение сопротивления в Омах.
  • Щупами прозваниваются на обрыв каждая обмотка отдельно.
  • Прозваниваются обмотки между собой. Сопротивление должно быть бесконечным. Если это не так, то налицо замыкание двух обмоток.

Разумеется, дроссель с замкнутыми обмотками подлежит замене.

Межвитковое замыкание

Эту неисправность определить бывает очень сложно даже при помощи мультиметра. Межвитковое замыкание чаще всего происходит при перегреве дросселя. Тогда многослойное эмаль-лаковое покрытие провода высыхает, твердеет, покрывается трещинами и, в конце концов, на каком-то участке происходит пробой и выгорание изоляции. Этот пробой возникает чаще всего тогда, когда дроссель генерирует высоковольтный импульс. На участке, где произошел пробой происходит спекание провода, причем это может коснуться нескольких слоев обмотки.

Типичная картина спекания обмоточных проводов дросселя при межвитковом замыкании

Как диагностировать эту проблему?

  • Сперва надо визуально рассмотреть дроссель. При замыкании обмотки и горении лака, которым покрыты провода выделяется едкий дым с характерным запахом, который оставляет черные следы от копоти. И также и дроссель надо понюхать, так как запах горелого лака остается надолго. При малейших признаках – немедленная замена.
  • Всегда хорошо иметь заведомо исправный дроссель той же модели. Тогда померив мультиметром сопротивление «эталона» и сравнив его с «подопытным» можно судить о межвитковом замыкании. Разумеется, если такая неприятность произошла, то сопротивление «подопытного» дросселя будет отличаться в меньшую сторону.
  • Качественные дроссели известных производителей имеют примерно равные сопротивления при равенстве мощностей. Приведем справочные данные: ЭмПРА мощностью 20 Вт имеют сопротивление 55—60 Ом, мощностью 40 Вт – от 24 до 30 Ом, а мощностью 80 Вт – от 15 до 20 Ом. Сравнив измеренное мультиметром сопротивление со справочными данными можно судить с какой-то долей вероятности об исправности дросселя.

Следует отметить, что если «закоротило» всего несколько соседних витков, то мультиметр может ничего и не показать. Но в очень недалеком будущем эта проблема все равно проявится.

Пробой на корпус

Это встречающаяся в жизни неисправность, которая не только может нарушить режим работы лампы, но и быть опасной для жизни человека. Поэтому всегда при прозвонке обмотки дросселя мультиметром надо еще и проверить не существует ли гальваническая связь с самим корпусом. Если сопротивление отличается от бесконечного, то это однозначно говорит о пробое.

Проверка пробоя на корпус должна производиться всегда

Мультиметр измеряет сопротивление при помощи встроенной батарейки на 9 В, а сетевое напряжение – 220 В. Соответственно и токи в дросселе протекают разные. Бывает, что замер мультиметром ничего не дал, но именно при подаче сетевого напряжения и происходит пробой. Поэтому очень полезно при работающем светильнике проверить наличие фазы на корпусе дросселя. Если она есть, то это тоже говорит о пробое и такой ЭмПРА подлежит немедленной замене.

Проверка фазы на клеммах и на корпусе дросселя индикатором

Неисправности магнитопровода

Магнитопровод электромагнитного дросселя только с первого взгляда может показаться исключительно прочной конструкцией, но на самом деле все далеко не так. он набран из отдельных пластин из электротехнической стали (сплав железа с кремнием), которая имеет хорошие магнитные свойства, но очень посредственные прочностные. Электротехническая сталь очень хрупкая и при механических воздействиях на ней могут легко образовываться трещины или сколы, которые влияют на индуктивность.

Состояние этого магнитопровода очень далеко от идеального

Когда по обмотке дросселя протекает электрический ток, возникающее в сердечнике сильное переменное магнитное поле также оказывает механическое воздействие на пластины. А также не забываем, что ЭмПРА может в процессе работы нагреваться до высоких температур, а это приводит к температурному расширению и сжатию, а это просто громадные силы. Производители принимают меры для неизменности положения пластин и обмоток, делая в качественных дросселях вакуумную пропитку полиэфирным или полиэфирно-эпоксидным компаундом, который застывает и повышает электроизоляционные свойства и помогает зафиксировать пластины, сохраняя неизменность индуктивности. А также сердечник с обмоткой помещают в прочный металлический корпус, который «обхватывает» пластины и заодно является экраном, препятствующим распространению магнитного поля вне дросселя. Однако, со временем компаунд все равно теряет свои свойства, пластины «разбалтываются», начинают издавать гул с удвоенной частотой сети 100 Гц, индуктивность дросселя становится нестабильной, а это сильно влияет на работу лампы.

Как же диагностировать неисправности магнитопровода или какие принимать профилактические меры?

  • Некоторые дроссели неизвестного происхождения имеют «врожденный» недостаток магнитопровода. Если они даже новые издают сильный гул, то лучше сразу такой дроссель поменять на что-то более «приличное».
  • Любое устройство, даже самое надежное, имеет свой срок службы. И электромагнитные дроссели здесь не исключение. Поэтому, когда проходит заявленный производителем срок службы, ЭмПРА лучше поменять.
  • Опять отмечаем полезность наличия в запасе нового и исправного ЭмПРА точно такого же, который работает в светильнике. Для того чтобы сравнить рабочий и эталонный образцы потребуется мультиметр с функцией измерения индуктивности. Сравнив эти показатели можно принять решение оставить дроссель еще поработать или поменять на новый.

Многофункциональный прибор для измерения индуктивности, емкости и сопротивления

Главное правило при эксплуатации светильников с люминесцентными лампами – это своевременная диагностика при малейших признаках «болезни» и немедленная замена неисправных элементов. К сожалению, это соблюдается не всегда и не везде, поэтому нередко мы можем наблюдать не горящие или мерцающие лампы и слышать не самый приятный для уха шум от изношенных дросселей в длинных коридорах, офисах, производственных помещениях и даже в школьных классах.

Как заменить дроссель в светильнике с люминесцентными лампами

После диагностирования проблем светильника следующим этапом идет замена неисправных элементов. В большинстве светильников самые «слабые» звенья (лампа и стартер), которые чаще требуют замены находятся в легкодоступных местах и не требуют демонтажа светильника. Замена же электромагнитного дросселя доставляет больше хлопот и сделать это на потолочном светильнике очень трудно, часто просто невозможно без полного демонтажа светильника или его части, в которой расположена вся электрическая «начинка». Гораздо удобнее и безопаснее делать это на столе. Какие действия надо для этого предпринять?

  • Работу проводить только с напарником, так как в случае поражения электрическим током должен быть кто-то способный оказать первую помощь.
  • Обесточивается светильник, отверткой индикатором проверяется отсутствие фазы на входных клеммах.
  • Питающий провод отсоединяется от входных клемм, демонтируется светильник и дальнейшие работы производятся на подготовленном столе.

Демонтированная электрическая часть светильника на рабочем столе

  • Проверяется состояние проводов внутри светильника, при малейшем намеке на повреждение изоляции  или применении в светильнике алюминиевых проводов принимается решение на их замену медным проводом ПВ-1.
  • Отсоединяются провода со входной клеммы дросселя, которая может быть винтовой, пружинной самозажимной или иметь плоские ножевые контакты, которые раньше использовались во времена СССР.
  • Демонтируется дроссель. Он может крепиться винтами в резьбовые отверстия, гайками с шайбами к резьбовым шпилькам или саморезами по металлу.
  • Новый дроссель примеряется на посадочное место, в случае необходимости сверлятся новые отверстия под саморезы.
  • Дроссель монтируется на свое место, проверяется надежность его крепления.

Монтаж нового дросселя в светильник. На потолке это сделать очень трудно

  • Если и в старом, и в новом дросселе используются клеммы с ножевыми разъёмами, то штекера можно оставить при условии их хорошего состояния. Если на старом дросселе были винтовые или пружинные клеммы, то концы оголенные концы проводов удаляются кусачками и затем снимается изоляция на длину примерно 10 мм.
  • Оконцованные провода зажимаются в клеммах.
  • Проверяется правильность и надежность всех электрических соединений.
  • В светильник устанавливаются новые стартеры и лампы и производится пробный запуск прямо на столе. Если все работает, то лампы снимают и светильник монтируется на свое место.
  • Устанавливаются лампы и проверяется работоспособность светильника уже на своем месте.

Проверка светильника после монтажа

Процесс замены дросселя довольно простой, но мы все же рекомендуем тем, кто не имеет опыта электромонтажа, обратиться к специалистам, а самому поработать напарником.

Видео: Подключение двух ламп на один дроссель

Видео: Замена электромагнитного балласта в люминесцентном светильнике

Заключение

В настоящее время идет массовый переход на новые электронные ПРА для люминесцентных ламп и этот процесс остановить невозможно. Некоторые производители светотехнического оборудования сознательно отказались от выпуска электромагнитных ПРА и все новые светильники оборудованы только ЭПРА. И это совершенно логично, так как при этом в школьных классах или в больничных палатах не будет неприятного шума и мерцания, а срок службы ламп вырастет в разы. Но есть еще достаточно мест, где применение «шумных» ЭмПРА не вызовет никакого дискомфорта. Это различные производства, места массового посещения людей, мастерские и другие помещения, где шум от дросселей просто не слышен.

Поэтому «списывать со счетов» электромагнитные дроссели для люминесцентных ламп еще пока рановато. Они еще долго будут работать даже по той простой причине, что срок службы у них большой и надежность находится на высоте. И это доказано многолетней работой электромагнитных дросселей.

stroyday.ru

Зачем нужен дроссель для люминесцентных ламп: устройство + схема подключения

Согласитесь: лишние приборы, без которых вполне может работать система освещения, покупать и устанавливать ни к чему. К таким устройствам, вызывающим сомнение, относится дроссель для люминесцентных ламп. Вы не знаете, нужен ли он в схеме подключения или без него можно обойтись?

Мы поможем вам разобраться с возникшим вопросом. В статье подробно рассмотрены особенности, назначение дросселя и выполняемые им функции. Приведены фото и схема подключения, которая поможет самостоятельно собрать люминесцентный светильник и выполнить его запуск, правильно подключив все компоненты в электроцепь.

В помощь домашнему мастеру мы подобрали ряд видеороликов, содержащих рекомендации по подключению люминесцентных лампочек, а также по выбору нужного дросселя в зависимости от типа лампы.

Назначение и устройство дросселя

Разрядные лампы, представителем которых является люминесцентная разновидность, нельзя зажечь как обычные, обеспечив электроснабжение. Они попросту не будут работать. Чтобы получить свечение такого типа источника, потребуется дополнительно использовать пуско-регулирующий аппарат.

Назначение балласта в схеме включения

Выходит, что для функционирования люминесцентной лампочки необходимо не только обеспечить протекание тока, но и приложить к ней напряжение.

Поэтому в схеме включения задействуют балласт – сопротивление. Оно включается последовательно с лампой и предназначено для ограничения тока, протекающего через ее электроды.

Его роль могут выполнять различные электротехнические компоненты:

  • в случае постоянного тока – это резисторы;
  • при переменном – дроссель, конденсатор и резистор.

Среди этих приспособлений наиболее удачным вариантом является дроссель. Он обладает реактивным сопротивлением без выделения излишнего тепла. Способен ограничить ток, предотвратив его лавинообразное нарастание при включении в электросеть.

Дроссель не только является неотъемлемым элементом в стартерной схеме включения, он выполняет такие функции:

  • способствует созданию безопасного и достаточного для конкретной лампочки тока, который обеспечивает оперативный разогрев ее электродов при разжигании;
  • импульс повышенного напряжения, образующийся в обмотке, способствует возникновению разряда в колбе люминесцента;
  • обеспечивает стабилизацию разряда при номинальном значении электротока;
  • способствует беспроблемной работе лампочки вопреки отклонениям напряжения, периодически возникающим в сети.

Важное значение для функционирования люминесцентных источников света имеет индуктивность дросселя. Поэтому при покупке этого электромеханического компонента следует обращать внимание на технические параметры, которые должны соответствовать характеристикам лампочки.

При выборе электромеханического ПРА, который еще называют дросселем или ограничителем тока, имеют значение не только техпараметры, но и репутация производителя – неизвестные китайские фирмы могут предложить ограничитель, реальные характеристики которого значительно ниже заявленных

Из чего состоит пускорегулятор?

Дроссель, используемый в схемах включения лампочек люминесцентного типа, – это не что иное, как намотка провода на сердечнике – катушка индуктивности. Именно ее промышленное исполнение и носит название дросселя в электротехнике, что дословно переводится как «ограничитель».

Различные типы обмоток с разнообразными сердечниками, отличающиеся размерами, формой и внешним видом. Индуктивность конкретного изделия напрямую зависит толщины провода, плотности расположения витков в намотке и их количества, формы сердечника и прочих параметров

Дроссель с нужными техническими характеристиками производят в промышленных условиях, поэтому у потребителя не возникнет проблем при подборе нужного варианта, соответствующего параметрам подключаемой лампочки.

Более того, имея навыки сбора различных электротехнических приспособлений, соответствующие комплектующие и электроинструменты, можно попытаться самостоятельно соорудить катушку с нужной индуктивностью.

На схемах изображение дросселя может отличаться. В цепях подключения люминесцентных лампочек чаще всего можно встретить вариант L6 – обмотка с магнитопроводом ферритовым сердечником

Дроссель состоит из следующих элементов:

  • проволока в изоляционном материале;
  • сердечник – чаще всего ферритового типа или из прочего материала;
  • заливочная масса, компаунд – в ее состав входят вещества, устойчивые к горению, что обеспечивает дополнительную изоляцию витков обмоточного провода;
  • корпус, в который помещена намотка – его производят из термоустойчивых полимеров.

Наличие последнего элемента зависит от особенностей и характеристик конкретной модели ограничителя тока.

Участвуя в схеме розжига разрядной лампочки вместе со стартером, индуктивное сопротивление в виде дросселя ограничивает силу тока в момент подачи напряжения на лампу, а генерация ЭДС самоиндукции в размере 1000 В обеспечивает ее зажигание и стабилизирует горение дуги

Стартерная схема несовершенна, хотя и показывает отличный результат. Но мерцание лампочки, шумность дросселя и его большие размеры, а также фальшьстарт из-за ненадежного стартера привели к изобретению более совершенной версии пускорегулятора – электронной.

ЭПРА в процессе функционирования способствуют снижению мощности по­терь до 50%, избавляют от миганий лампочки. Их использование позволило уменьшить массу дросселей, а также существенно повысить отдачу осветительного прибора.

Правда стоимость электронного балласта существенно выше ЭМПРА, да и приобретать нужно у производителей с отличной репутацией – таких как Philips, Osram, Tridonic, прочие.

Схема + самостоятельное подключение

Люминесцентную лампочку просто так не включишь – ей требуется зажигатель и ограничитель тока. В миниатюрных моделях производитель все эти элементы предусмотрительно встроил в корпус и потребителю остается лишь вкрутить изделие в подходящий патрон светильника/люстры и щелкнуть выключателем.

А для более габаритных изделий потребуется пускорегулирующая аппаратура, которая бывает как электромеханического, так и электронного типа. Чтобы ее правильно подсоединить, обеспечив беспроблемную работу прибора, предстоит знать порядок подключения отдельных элементов в электроцепь.

Схема подключения люминесцентной лампочки (EL) с использованием дросселирующего аппарата, где LL – это дроссель, SV – стартер, C1, C2 – конденсаторы

Правда имея схему, но не имея практического опыта по выполнению подобного рода работ, сложно будет справиться с задачей. Более того, если подключение требуется выполнить вне дома – в коридоре учебного учреждения или прочего общественного заведения – то самовольное вмешательство в работу электросети может обернуться проблемами.

Для этого в штате учреждений должен быть электрик, работающий на постоянной основе или же обслуживающий заведение по мере возникновения потребностей в его услугах.

На схеме реализовано подключение двух лампочек люминесцентного типа последовательно. Существенная проблема – если сломается/перегорит одна из них, то вторая тоже работать не будет

Рассмотрим пошаговое подключение двух трубчатых ЛЛ к электросети с использованием стартерной схемы. Для чего понадобится 2 стартера, дросселирующий компонент, тип которого должен обязательно соответствовать типу лампочек.

А также следует обратить внимание на суммарную мощность пускателей, которая не должна превышать этот параметр у дросселя.

При подключении питающего кабеля к светильнику важно помнить, что за ограничение тока отвечает дроссель.

Значит, фазную жилу предстоит подсоединять через него, а на лампочку подключить нулевой провод.

Вторую жилу от питающего кабеля следует вставить в разъем электромеханического ПРА, который еще называют дросселем. Правильное отверстие выбирают исходя из обозначений, нанесенных на его корпусе Теперь предстоит заняться дальнейшим формированием цепи, соединив вторую ЛЛ со вторым стартером, а точнее, с его держателем. Для этого нужно взять еще одну короткую жилу и вставить один конец в разъем держателя лампочки, а второй – в отверстие крепления стартера Аналогичную процедуру предстоит проделать с другой стороны трубчатого люминесцента, тоже используя короткий проводок. Особое внимание следует уделить надежности создаваемого контакта – чтобы ничего не болталось Осталось завершить формирование цепи, используя еще одну длинную жилу, конец которой предстоит подключить в свободный разъем держателя второй лампочки, а второй – в отверстие дросселирующего компонента Теперь нужно закрепить все элементы схемы, требуемые для работы собранной системы. Для этого нужно взять 2 стартера, приобретенные заранее. Важно чтобы их тип и мощность соответствовали параметрам ЛЛ Каждый стартер, который еще называют пускатель, следует поставить в заранее подготовленные держатели, к которым уже успели подсоединить провода. Этот элемент представляет собой небольшую колбу с двумя электродами – жестким и гибким биметаллическим Второй стартер аналогично крепится в полости держателя, расположенного с противоположной стороны рядом с дросселем. От одного балластного компонента на 36 Вт можно запитать 2 лампочки Осталось самое интересное – проверить в действии собранную схему, включив питающий кабель в электрическую сеть. Если все выполнено правильно, то две ЛЛ запустятся и начнут светить. В противном случае они никак не отреагируют Фазную жилу питающего кабеля подсоединяют в дроссельСоединение второй лампы со вторым стартеромПодсоединение в цепь второй стороны лампыСоединение второй лампы с дросселемПо одному стартеру для каждой лампочкиУстановка пускателей в держателиДроссель один на две лампочкиПроверка работоспособности собранной схемы

Подобная схема подключения актуальна для больших осветительных приборов. Что же касается компактных моделей, то они оснащены встроенным механизмом запуска и регулировки – миниатюрным ЭПРА, вмонтированном внутри корпуса изделия.

В компактной люминесцентной лампочке между цоколем и трубками со смесью газов располагается пускорегулирующий аппарат маленьких размеров. Он отлично справляется с запуском прибора и по сроку службы может значительно выигрывать у других элементов ЛЛ

Перегрев дросселя и возможные последствия

Использование лампочек, у которых вышел срок службы и периодически возникают различные поломки, может обернуться пожаром. О том, как утилизировать отслужившие люминесцентные приборы, подробно написано здесь.

Избежать возникновения пожароопасной ситуации поможет регулярное инспектирование состояния осветительных приборов – визуальный осмотр, проверка основных узлов.

К концу службы лампы можно заметить существенный перегрев ПРА – конечно, водой проверять температуру нельзя, для этого следует воспользоваться измерительными приборами. Нагрев способен достигать 135 градусов и выше, что чревато печальными последствиями

При неправильной эксплуатации может произойти взрыв колбы ртутной лампочки. Мельчайшие частицы в состоянии разлететься в радиусе трех метров. Причем они сохраняют свои зажигательные способности, даже упав с высоты потолка на пол.

Опасность представляет перегрев обмотки дросселя – аппарат состоит из различных типов материалов, каждый из которых имеет свои характеристики. Например, изоляционные прокладки производители пропитывают сложными составами, отдельные элементы которых имеют неодинаковую горючесть и способность к образованию дыма.

Даже семь витков дросселя, в которых случилось замыкание, способны стать пожароопасными. Хотя большую вероятность возгорания представляет замыкание не менее 78 витков – этот факт был установлен опытным путем

Помимо перегрева дросселирующего элемента, существуют и другие ситуации с люминесцентными светильниками, представляющие пожарную опасность.

Это могут быть:

  • проблемы, обусловленные нарушением технологии изготовления ПРА, что повлияло на конечное качество аппарата;
  • плохой материал рассеивателя осветительного прибора;
  • схема зажигания – со стартером или без него пожарная опасность одинакова.

Следует помнить, что к проблемам может привести небрежность при выполнении подключения, плохое качество контактов или составляющих цепи, что чаще всего происходит при использовании совсем дешевых аппаратов, приобретенных у неизвестных производителей.

Добросовестные компании дают гарантию на свою продукцию, а технические параметры приборов, указанные на корпусе или упаковке, соответствуют действительности. Этот факт прямо влияет на срок службы как самого ПРА, так и газоразрядных лампочек, с особенностями устройства и работы которых ознакомит рекомендуемая нами статья.

Выводы и полезное видео по теме

Тонкости сборки схемы из двух ЛЛ с последовательным включением:

Видеоролик о том, что такое дроссель и зачем он нужен:

Проверка дросселя на предмет поломки:

О правилах выбора дросселя в зависимости от типа разрядной лампы:

Ознакомившись с назначением и устройством дросселей, используемых для запуска люминесцентных лампочек, можно вооружиться схемой подключения и попытаться реализовать ее самостоятельно. Правда, это актуально для дома.

В общественных учреждениях решение подобных вопросов следует доверить электрикам, имеющим спецдопуск к электромонтажным работам.

Пишите, пожалуйста, комментарии в находящемся ниже блоке, размещайте фото по теме статьи, задавайте вопросы. Расскажите о том, как подбирали и подключали дроссель. Делитесь полезной информацией по аспектам выбора и технологии установки устройства.

sovet-ingenera.com

Для чего нужен дроссель для люминесцентных ламп?

Подключение лампы с электромагнитным дросселем

Электромагнитный дроссель находит применение в цепях коммутации люминесцентной лампы.

Назначение дросселя – формирование импульса для пробоя газонаполненной среды и поддержание необходимого напряжения и тока в схеме и на контактах элементов работающего светильника. Принцип работы дросселя основан на способности катушки индуктивности извлекать энергию из источника тока и сохранять ее в виде магнитного поля.

Чтобы выяснить, как работает дроссель, нужно рассмотреть свойства катушки индуктивности. Она плохо проводит переменный ток или совсем не проводит его. Индуктивность измеряется в Генри (Гн) и ее значение можно увеличить путем применения сердечника, оно таким образом повышается в несколько раз.

Во время замыкания контактов выключателя величина тока на катушке постепенно возрастает, а при размыкании сначала растет многократно, а затем плавно уменьшается. В соленоиде этот параметр не изменяется мгновенно.

Дроссель для люминесцентных ламп – это катушка индуктивности с ферромагнитным сердечником. Он находит применение только в электрических цепях, в которых предусмотрено наличие электромагнитного ПРА.

На картинках показана схема подключения газоразрядной лампы низкого давления с использованием электромагнитного дросселя.

  • 2 – электроды лампы;
  • 1 – колба (трубка);
  • Ст – стартер;
  • С1 – конденсатор, находящийся в одном корпусе со стартером;
  • С2 – конденсатор, повышающий коэффициент мощности;
  • Д – дроссель.
Механизм запуска лампы с электромагнитным балластом

При замыкании выключателя ток протекает по следующему пути: «дроссель – электрод лампы – стартер – второй электрод лампы – сеть».

Величины этого тока очень мало для зажигания лампы. Но его значения хватает для нагревания электродов стартера и появления в нем тлеющего разряда. Напряжение этого разряда меньше напряжения сети, но больше напряжения работающей лампы.

Разогретый биметаллический электрод в стартере замыкается со вторым, после чего тлеющий разряд между ними гаснет, электроды остывают и занимают первоначальное положение.

В момент замыкания электродов в стартере ток в схеме значительно возрастает и электроды люминесцентной лампы начинают нагреваться. В то же время при размыкании цепи на дросселе (в результате самоиндукции) происходит скачок напряжения, который, складываясь с входным напряжением сети, создает условия для включения лампы.

К этому моменту температура на электродах лампы успевает повыситься до значения, необходимого для эмиссии, а дросселирующее устройство создает высоковольтный импульс. Поэтому в лампе создаются условия для возникновения тлеющего разряда, который сначала происходит в аргоновой среде до тех пор, пока ртуть, помещенная в колбу, не перейдет полностью в парообразное состояние. После этого разряд будет происходить в ртутных парах, и лампа войдет в стабильный рабочий режим.

Напряжение на работающей лампе меньше сетевого за счет его падения на дросселе. Поскольку для срабатывания стартера напряжение на нем должно превышать величину напряжения на включенной лампе, повторно разряд в этом приборе не зажжется.

Зажигание лампы происходит при условии совпадения по фазе импульса дросселируемого напряжения и напряжения сети. Но поскольку совпадения этих значений относительно разбросаны по времени, стартер может срабатывать неоднократно перед тем, как лампа войдет в рабочий режим. В этом случае наблюдается мигание лампы в процессе включения. Одновременно в стартере создаются радиопомехи, для подавления которых служит конденсатор, находящийся в общем со стартером футляре.

Так выглядит электромагнитный дроссель

Это означает, что кроме зажигания этого осветительного прибора дроссель необходим для ограничения возрастания тока разряда до величины, при достижении которой лампа выходит из строя.

Все, изложенное выше, объясняет, для чего нужен дроссель.

В результате того, что он ограничивает ток в схеме работающей лампы, он представляет собой дополнительную нагрузку (балласт) и на нем теряется какая-то часть мощности. По уровню этих потерь дроссели делятся на следующие классы: D – с обычными; C – с пониженными; B – с особо низкими.

Потери мощности в дросселях

Класс

Потери мощности, Вт

дросселя

С лампой С лампой

С лампой

18 Вт

36 Вт 58 Вт

D

12 10

14

С

10 9

12

В2

8

7

9

В1

6 6

8

В силу физических свойств дросселя на нем происходит сдвиг по фазам между напряжением и током. Ток отстает от напряжения на величину, которую принято обозначать как cos φ. Чем выше его значение, тем экономичнее прибор, и наоборот, при понижении этой величины энергоэффективность снижается.

На рисунке показан график изменения тока и напряжения на люминесцентной лампе и лампе накаливания.

Основные виды дросселей

  • Электромагнитный дроссель для лампы, который подключается последовательно с лампой и в схеме необходимо наличие стартера.

К его достоинствам можно отнести низкую стоимость, простоту конструкции и достаточную надежность.

Недостатки: возможность появления шума и мерцания во время работы и при запуске; довольно продолжительный процесс включения; необходимость подключения конденсатора для снижения потерь.

Мощность дросселя должна соответствовать мощности лампы.

  • Электронный дроссель, для подключения которого не нужен стартер.

Положительные качества: быстрое включение; обеспечение работы лампы без миганий; компактность, малый вес.

В результате использования этого вида дросселей снижаются мерцания. Пульсаций при запуске лампы не происходит. Снижается вероятность появления шума при работе.

Дроссели можно разделить на две группы по типу сетей, в которых эксплуатируются лампы:

  1. однофазные (для использования в быту) на 220 В;
  2. трехфазные, которые устанавливаются в светильниках, работающих в сетях на 380 В. Это светильники для освещения промышленных предприятий, улиц и объектов сельскохозяйственного профиля.

Все эти виды дросселей также можно разделить по месту их расположения:

  • находящиеся внутри корпуса светильника, который обеспечивает им защиту от неблагоприятных факторов внешней среды и атмосферы;
  • помещенные в специальный кожух. Такое герметичное исполнение позволяет устанавливать эти приборы в осветительных сетях наружного освещения.

Ремонт светильников с перегоревшими дросселями

Светильники с перегоревшими электромагнитными дросселями можно отремонтировать самостоятельно, заменив отказавший элемент другим, например, применяемым в иных вариантах световой аппаратуры.

Например, в настольных светильниках с ЭмПРА можно использовать плату (с элементами, обеспечивающими горение лампы) от энергосберегающей лампы.

Для этого нужно найти экономичную перегоревшую лампочку (той же мощности, что и у ремонтируемой) с сохранившейся в хорошем состоянии электронной «начинкой».

Перегоревшая энергосберегающая лампа с электронной начинкой

Далее необходимо отделить от лампы цоколь вместе с платой и извлечь саму плату. При этом запомнить, где находятся выводы на высоковольтный конденсатор, на лампу и на входное напряжение питания 220 В.

Все штырьки, расположенные на плате, и конденсатор (на картинке он зеленого цвета) необходимо выпаять.

Он пойдет в нижнюю, пластмассовую часть цоколя настольной лампы.

Для этого снимаем нижнюю пластину в месте, отмеченном на рисунке, и вытаскиваем из вскрытого кожуха находящиеся в нем детали, которые были соединены при помощи латунных трубок с электродами лампы.

Вместо удаленных нами элементов к проводам, идущим на электроды, присоединяем конденсатор, выпаянный с платы, и помещаем во вскрытый кожух. После этого отделенную нами пластину возвращаем на место и приклеиваем клеем.

Помещаем во вскрытый кожух

Далее создаем точки соединения штырьковых выводов электродов с проводами, выходящими с преобразующей электронной платы, снятой с энергосберегающей лампы.

Создаем точки соединения штырьковых выводов электродов с проводами

Для этого провода с коммутирующего разъема припаиваем к контактам платы на выходе (на рисунке они находятся слева).

Плату помещаем в защитный корпус.

Зачем это нужно сделать?

Так как элементы на плате находятся под высоким напряжением, в целях электробезопасности нужно закрыть к ним доступ.

Через провода, находящиеся справа на рисунке, в схему подается входное напряжение от сети 220 В.

Для подключения используем вилку и розетку.

Включаем созданную конструкцию в сеть. Лампа загорается, светильник работает.

Такие и многие другие самоделки позволяют экономить деньги на покупке товаров, взамен вышедших из строя. При наличии некоторого объема знаний и опыта всегда есть возможность сделать нужные изменения и ремонт светильника своими руками.

lampagid.ru

Важный элемент люминесцентных ламп – дроссель: принцип работы, как выбрать

Сегодня люминесцентные лампы – это довольно распространенная разновидность источников света. Они дают качественный спектр освещения, что и обеспечило им такую огромную распространенность в современном мире. Подходящий спектр освещения лампы дневного света создают благодаря особой конструкции, одной из главных частей которой является дроссель.

Балласты для лампы дневного света

Что собой представляет дроссель для люминесцентных ламп, а также особенности его строения вы узнаете из этой статьи.

Люминесцентные лампы и их строение

Поскольку во многих помещениях сегодня используются лампы дневного света, то важно знать, из чего они состоят. Эта информация поможет не только правильно эксплуатировать подобные осветительные установки, но и при необходимости ремонтировать их своими руками.

Обратите внимание! Лампы дневного света сегодня активно используются как для уличного, так и для внутреннего освещения.

Люминесцентные лампы в интерьере

Для освещения, реализуемого через лампы дневного света характерны следующие достоинства:

  • высокая интенсивность свечения;
  • широкий диапазон распространения света;
  • высокая надежность освещения;
  • возможность работы в разнообразном температурном режиме. В связи с этим такие лампочки можно использовать и для уличного типа освещения;
  • небольшой нагрев корпуса светильника;
  • свечение источника света характеризуется отменными техническими характеристиками;
  • излучение света осуществляется в строго определённом режиме и спектре. При этом свечение здесь максимально близко к дневному типу света;
  • высокая износостойкость. Люминесцентные лампы могут проработать без сбоя до 20 тысяч рабочих часов;
  • отличная производительность.

Лампы дневного света обладают одной особенностью – их нельзя напрямую подключать в стандартную электрическую сеть. Такая ситуация возникла по следующим причинам:

  • для создания стойкого разряда в такой лампочке необходимо предварительное разогревание электродов, а также подача на них стартового импульса;
  • наличие необходимости ограничения возрастания силы тока, которое имеет место после выхода устройства из рабочего состояния.

Поэтому в своей конструкции лампы дневного света содержат ПРА (пускорегулирующий аппарат). Он необходим для нормальной работы люминесцентной лампочки. Важным элементом ПРА любого типа (например, ЭПРА) является дроссель.

Важный элемент элкетросхемы

Дроссель является необходимой составляющей люминесцентных ламп, необходимый для бесперебойной и длительной работы. Для эффективной работы ламп дневного света нужны не только дроссели, но также стартеры и другие элементы электросхемы.

Внешний вид дросселя

Дроссель устройство представляет собой индуктивную катушку. В нее вставлен сердечник, имеющий металлическую оправу. Все это сверху сокрыто под кожухом. Вот такое строение и имеют дроссели, которые используются внутри люминесцентных ламп. Для ламп дневного света осуществляет подбор балласта по мощности.

Обратите внимание! Дроссели, подбираемые для люминесцентных ламп, должны иметь с ними одинаковую мощность. Этот параметр обязательно нужно учитывать, чтобы лампочка работала, как надо.

Назначение дросселей с электросхеме источника света данного типа заключается в ограничении подачи тока до нужного уровня, который необходим каждому отдельному светильнику. Вот для чего в конструкции любой лампы дневного света всегда будет встречаться дроссель. Кроме этого наличие дросселей в конструкции источника света продиктовано следующими причинами:

  • дросселирующее приспособление осуществляет зажигание нити накаливания;
  • дроссели также регулируют мощность тока.

В конструкции ЭПРА или ПРА другого типа он нужен для выполнения роли балласта. Он берет на себя в электроцепи лишние ватты. Таким образом балласт в лампах люминесцентного типа нужен для того, чтобы создавать электроимпульс, с помощью которого происходит поджиг газоразрядной лампы. Именно это устройство создает для данного источника света необходимые условия для работы.

Принцип работы балласта

На данный момент существуют два типа дросселей: электрический и электромагнитный. Оба вида имеют идентичное назначение и различаются перечнем достоинств и недостатков, а также тем, в какие ПРА они вставляются. При этом они имеют схожий принцип работы. Рассмотрим принцип работы электромагнитного дросселя. Он имеет следующую схему подключения.

Схема подключения электромагнитного дросселя

Схема расшифровывается следующим образом:

  • EL – люминесцентная лампа;
  • SF – стартер;
  • LL – электромагнитный балласт (дроссельное устройство);
  • 1 и 2 — спирали лампы;
  • C – конденсатор.

Теперь можно рассмотреть принцип работы данного типа устройства:

  • в момент подключения к сети через LL и спираль 1 проходит, а также SF начинает проходить ток. Его сила равна 40-50 мА;
  • в колбе SF ионизируется инертный газ, в результате чего сила тока повышается и разогревается биметаллические контакты;
  • далее электроды SF замыкаются. Это приводит к повышению силы тока до 600 мА. После этого его рост ограничивает LL;
  • далее происходит разогрев обеих спиралей и в газовой смеси образуется разряд;
  • таким образом создается ультрафиолетовое излучение, попадающее на внутренний слой люминофора.

В итоге лампочка начинает светиться. В связи с этим можно заключить, что дроссели в таких устройствах имеют следующий принцип работы – осуществляют на 90 градусов сдвиг фазы перепоенного тока. В результате они поддерживают необходимый уровень тока в электросхеме. Такой принцип работы характерен для люминесцентных светильников уличного и внутреннего типа освещения.

Разнообразие выбора

Чтобы правильно выбрать балласт для ламп дневного света, нужно знать достоинства и недостатки существующих на рынке моделей. Как уже говорилось выше, на сегодняшний день выделяют следующие виды данной продукции:

  • электромагнитный. Устройство электромагнитного типа встречается в в обычных ПРА.
  • электронный дроссель. Его также еще называют дроссель электрический. На сегодняшний день он считается более совершенным вариантом. Они используются в ЭПРА;

Рассмотрим эти виды данной продукции более детально. Особенностью источников света, где используются электромагнитные виды дроссельных устройств, является их невысокая стоимость, а также простой монтаж и эксплуатация.

Электромагнитный балласт

Однако их недостатки значительно превышают эти преимущества. К недостаткам электромагнитных дросселей можно отнести следующие моменты:

  • громоздкие размеры;
  • создание шума во время работы;
  • имеется эффект стробирования, что может негативным образом сказываться на качестве освещения;
  • на такой балласт уходит примерно 25% мощности.

Поэтому такие устройства часто используются для создания уличного типа освещения.

Обратите внимание! Все перечисленные выше недостатки не содержит электронный дроссель, который используется в ЭПРА.

Электронный ПРА

На сегодняшний день именно ЭПРА наиболее часто используются для включения люминесцентных ламп. ЭПРА стали массово появляться примерно 30 лет назад и на сегодняшний день они уже практически полностью вытеснили электромагнитные типы балластов и ПРА. Это связано с тем, что ЭПРА имеют следующие преимущества в эксплуатации:

  • увеличенная световая отдача, которая стала возможна благодаря высокочастотному разряду;
  • минимизирован эффект стробирования. Это позволило значительно расширить сферу применения данного типа осветительных приспособлений;
  • отсутствие шума;
  • отсутствие фальстарта;
  • увеличение сроков эксплуатации;
  • энергопотребление уменьшилось примерно на 30 %;
  • КПД находиться примерно на уровне 97%;
  • отсутствует необходимость компенсировать реактивную нагрузку.

Обратите внимание! Некоторые модели ЭПРА обладают способностью управлять мощностью источника освещения. Это стало возможным благодаря регулированию частоты в преобразователе напряжения.

Как видим, по своим характеристикам ЭПРА является самым выгодным типом устройства для ламп дневного света. Поэтому именно данный тип балласта и следует выбирать для внутреннего устройства люминесцентных лампочек.

Дополнительная информация для правильного выбора

Кроме вышеописанных типов балластов, применяемых для эффективной работы ламп дневного света, они могут делиться на различные типы по таким же характеристикам, что и сами лампочки.

Обратите внимание! Если к источнику света подключить балласт, который не соответствует ему по техническим характеристикам (например, по мощности), то это приведет к поломке всей осветительной установке.

В связи с этим, выбирая дроссели для люминесцентных ламп, необходимо обращать на технические характеристики, как самих источников света, так и балластов. Эти знания понадобиться в ситуации, ремонт люминесцентного типа источника света будет осуществляться своими руками. В таком случае можно сэкономить на оплате работы профессионального ремонтника и своими руками починить такой осветительный прибор.

Заключение

Знания о том, как устроена люминесцентная лампа, и какую роль в ее работе играет балласт, помогут вам использовать эту разновидность источника света максимально долго и, при необходимости, провести замену испорченного элемента электросхемы своими руками.

1posvetu.ru


Смотрите также