Драйвер для светодиодных ламп


Светодиодный драйвер: принцип работы и правила подбора

Светодиоды получили большую популярность. Главную роль в этом сыграл светодиодный драйвер, поддерживающий постоянный выходной ток определенного значения. Можно сказать, что это устройство представляет собой источник тока для LED-приборов. Такой драйвер тока, работая вместе со светодиодом, обеспечивает долголетний срок службы и надежную яркость. Анализ характеристик и видов этих устройств позволяет понять, какие они выполняют функции, и как их правильно выбирать.

Что такое драйвер и каково его назначение?

Драйвер для светодиодов является электронным устройством, на выходе которого образуется постоянный ток после стабилизации. В данном случае образуется не напряжение, а именно ток. Устройства, которые стабилизируют напряжение, называются блоками питания. На их корпусе указывается выходное напряжение. Блоки питания 12 В применяют для питания LED-линеек, светодиодной ленты и модулей.

Основным параметром LED-драйвера, которым он сможет обеспечивать потребителя длительное время при определенной нагрузке, является выходной ток. В качестве нагрузки применяются отдельные светодиоды или сборки из аналогичных элементов.

КПД импульсного драйвера для светодиодов достигает 95%

Драйвер для светодиода обычно питается от сети напряжением 220 В. В большинстве случаев диапазон рабочего выходного напряжения составляет от трех вольт и может достигать нескольких десятков вольт. Для подключения светодиодов 3W в количестве шести штук потребуется драйвер с выходным напряжением от 9 до 21 В, рассчитанный на 780 мА. При своей универсальности он обладает малым КПД, если на него включить минимальную нагрузку.

При освещении в автомобилях, в фарах велосипедов, мотоциклов, мопедов и т. д., в оснащении переносных фонарей используется питание с постоянным напряжением, значение которого варьируется от 9 до 36 В. Можно не применять драйвер для светодиодов с небольшой мощностью, но в таких случаях потребуется внесение соответствующего резистора в питающую сеть напряжением 220 В. Несмотря на то, что в бытовых выключателях используется этот элемент, подключить светодиод к сети 220 В и рассчитывать на надежность достаточно проблематично.

Основные особенности

Мощность, которую эти устройства способны отдавать под нагрузкой, является важным показателем. Не стоит перегружать его, пытаясь добиться максимальных результатов. В результате таких действий могут выйти из строя драйверы для светодиодов или же сами LED-элементы.

Дешевый светодиодный драйвер

На электронную начинку устройства влияет множество причин:

  • класс защиты аппарата;
  • элементная составляющая, которая применяется для сборки;
  • параметры входа и выхода;
  • марка производителя.

Изготовление современных драйверов выполняется при помощи микросхем с использованием технологии широтно-импульсного преобразования, в состав которых входят импульсные преобразователи и схемы, стабилизирующие ток. ШИМ-преобразователи запитываются от 220 В, обладают высоким классом защиты от коротких замыканий, перегрузок, а так же высоким КПД.

Технические характеристики

Перед приобретением преобразователя для светодиодов следует изучить характеристики устройства. К ним относятся следующие параметры:

  • выдаваемая мощность;
  • выходное напряжение;
  • номинальный ток.
Схема подключения LED-драйвера

На выходное напряжение влияет схема подключения к источнику питания, количество в ней светодиодов. Значение тока пропорционально зависит от мощности диодов и яркости их излучения. Светодиодный драйвер должен выдавать столько тока для светодиодов, сколько потребуется для обеспечения постоянной яркости. Стоит помнить, что мощность необходимого устройства должна быть более потребляемой всеми светодиодами. Рассчитать ее можно, используя следующую формулу:

P = P(led) × n

P(led) – мощность одного LED-элемента;

n — количество LED-элементов.

Для обеспечения длительной и стабильной работы драйвера следует учитывать запас мощности устройства в 20–30% от номинальной.

Подключение светодиодов к драйверу

Выполняя расчет, следует учитывать цветовой фактор потребителя, так как он влияет на падение напряжения. У разных цветов оно будет иметь отличающиеся значения.

Срок годности

Светодиодные драйверы, как и вся электроника, обладают определенным сроком службы, на который сильно влияют эксплуатационные условия. LED-элементы, изготовленные известными брендами, рассчитаны на работу до 100 тысяч часов, что намного дольше источников питания. По качеству рассчитанный драйвер можно классифицировать на три типа:

  • низкого качества, с работоспособностью до 20 тысяч часов;
  • с усредненными параметрами — до 50 тысяч часов;
  • преобразователь, состоящий из комплектующих известных брендов — до 70 тысяч часов.

Многие даже не знают, зачем обращать внимание на этот параметр. Это понадобится для выбора устройства для длительного использования и дальнейшей окупаемости. Для использования в бытовых помещениях подойдет первая категория (до 20 тысяч часов).

Как подобрать драйвер?

Насчитывается множество разновидностей драйверов, используемых для LED-освещения. Большинство из представленной продукции изготовлено в Китае и не имеет нужного качества, но выделяется при этом низким ценовым диапазоном. Если нужен хороший драйвер, лучше не гнаться за дешевизной китайского производства, так как их характеристики не всегда совпадают с заявленными, и редко когда к ним прилагается гарантия. Может быть брак на микросхеме или быстрый выход из строя устройства, в таком случае не удастся совершить обмен на более качественное изделие или вернуть средства.

Светодиодный драйвер без корпуса

Наиболее часто выбираемым вариантом является бескорпусный драйвер, питающийся от 220 В или 12 В. Различные модификации позволяют использовать их для одного или более светодиодов. Эти устройства можно выбрать для организации исследований в лаборатории или же проведения экспериментов. Для фито-ламп и бытового применения выбирают драйверы для светодиодов, находящиеся в корпусе.  Бескорпусные устройства выигрывают в ценовом плане, но проигрывают в эстетике, безопасности и надежности.

Виды драйверов

Устройства, осуществляющие питание светодиодов, условно можно разделить на:

Устройства импульсного типа производят на выходе множество токовых импульсов высокой частоты и работают по принципу ШИМ, КПД у них составляет до 95%. Импульсные преобразователи имеют один существенный недостаток — во время работы возникают сильные электромагнитные помехи. Для обеспечения стабильного выходного тока в линейный драйвер установлен генератор тока, который играет роль выхода. Такие устройства имеют небольшой КПД (до 80%), но при этом просты в техническом плане и стоят недорого. Такие устройства не получится использовать для потребителей большой мощности.

Из вышеперечисленного можно сделать вывод, что источник питания для светодиодов следует выбирать очень тщательно. Примером может послужить люминесцентная лампа, на которую подается ток, превышающий норму на 20%. В ее характеристиках практически не произойдет изменений, а вот работоспособность светодиода уменьшится в несколько раз.

Драйвер для светодиодного светильника: назначение, виды, принцип работы и изготовление

Драйвер для светодиодного светильника — важнейший элемент схемы, обеспечивающий хорошую яркость, эффективность и продолжительную эксплуатацию источников света. С его помощью происходит трансформация переменного тока промышленной сети напряжением 220 В в постоянный ток нужного значения (12/24/48 В). Разберемся во всех функциях электротехнического элемента и укажем важные критерии выбора устройств.

Драйвер — электронный компонент, на который поступает напряжение переменного тока, происходит стабилизация и выходит напряжение постоянного тока. Здесь важно понимать, что речь идет о получении тока. Для преобразования напряжения используются обычные блоки питания (на корпусе указывается значение выходного напряжения). Блоки питания эксплуатируются в диодных лентах.

Главная характеристика преобразователя для светодиодных осветительных приборов — выходной ток. Для нагрузки используют вспомогательные led-диоды или другие полупроводники. Практически всегда драйвер питается от промышленной сети 220 В, а диапазон напряжения на выходе начинается от 2 – 3 и заканчивается десятками Вольт. Чтобы подключить три светодиода на 3 Вт, необходим электронный драйвер с выходным напряжением 9 – 21 В и током 780 мА. При небольшой нагрузке универсальное устройство характеризуется низким коэффициентом полезного действия (КПД).

Для питания фар транспортных средств применяют источник с постоянным напряжением от 10 до 35 В. Если мощность невысокая, драйвер необязателен, но потребуется соответствующий резистор. Данный компонент — незаменимая часть бытового выключателя, но при коммутации led-диода к переменной сети 220 В нельзя рассчитывать на надежную и долговечную работу.

к содержанию ↑

Принцип работы

Преобразователь выступает источником тока. Разберемся в отличиях изделия от блока питания — источника напряжения.

На выходе каждого преобразователя напряжения имеем определенное напряжение, которое не связано с нагрузкой. К примеру, если подключить к блоку питания 12 В сопротивление 40 Ом, через него будет идти ток 300 мА. Если установить два резистора параллельно, то в сумме получится ток 600 мА, хотя напряжение останется идентичным.

Что касается драйвера, он дает одинаковый ток, несмотря на изменяющееся в меньшую или большую сторону напряжение. Возьмите резистор 30 Ом и соедините его с драйвером на 225 мА. Напряжение упадет до 12 В. Если выполнить коммутацию двух параллельно соединенных резисторов по 30 Ом каждый, ток все равно останется равным 225 мА, но напряжение уменьшится вдвое — до 6 В.

Отсюда вывод: качественный драйвер гарантирует нагрузке заданный выходной ток независимо от изменяющегося напряжения. В результате led-диод при подаче напряжения 5 В будет светить одинаково ярко в сравнении с источником питания на 10 В при условии сохранения идентичного тока.

к содержанию ↑

Технические характеристики

Необходимость покупки драйвера возникает, если был найден интересный светильник без преобразователя тока. Другой вариант — создание источника света с нуля путем приобретения каждого элемента отдельно.

Перед покупкой преобразователя тока изучите три главные характеристики:

  • выходной ампераж;
  • рабочая мощность;
  • выходной вольтаж.

Выходное напряжение рассчитывается исходя из схемы подключения к питанию и числа светодиодов. Значение тока оказывает воздействие на мощность и уровень свечения. Выходного тока драйвера для led-диодов должно быть достаточно для постоянного и яркого свечения.

Мощность изделия должна быть выше суммарного значения всех светодиодов. Для расчета используется формула P = P (led) × X, где

  • P (led) — мощность диода;
  • X — число диодов.

Для гарантии продолжительной эксплуатации драйвера нужно ориентироваться на запас мощности — покупайте преобразователи номинальной мощностью на 20 – 30 % выше требуемого значения. Не забывайте о цветовом факторе, непосредственно связанном с падением напряжения. Последняя величина изменяется в зависимости от разных цветов.

к содержанию ↑

Срок годности

Срок эксплуатации драйвера несколько меньше по сравнению с оптической составляющей светодиодного светильника — порядка 30 000 часов. Это связано с рядом причин: скачками напряжения, изменениями температуры, влажности и нагрузкой на преобразователь.

Одно из уязвимых мест — сглаживающий конденсатор, в котором со временем испаряется электролит. В большинстве случаев это происходит при монтаже в помещениях с высокой влажностью или подключении к сети, в которой есть скачки напряжения. Подход приведет к повышению пульсаций на выходе устройства, что негативно воздействует на led-диоды.

Нередко срок службы драйвера уменьшается из-за частичной загруженности. Если используется устройство мощностью 200 Вт с уменьшенной в два раза нагрузкой (100 Вт), половина от номинального значения вернется в сеть, что вызовет перегрузку и более частые сбои питания.

к содержанию ↑

Виды драйверов

Существуют две основные категории преобразователей тока для светодиодов — линейного и импульсного типов. На линейном оборудовании выход — генератор тока, гарантирующий стабилизацию при любых перепадах сетевого напряжения. Компонент выполняет плавную подстройку без образования электромагнитных волн высокой частоты. Простые и дешевые изделия с КПД ниже 80 %, что ограничивает область использования до светодиодов и лент малой мощности.

Принцип действия импульсных драйверов сложнее — на выходе образуется серия импульсов тока высокой частоты.

Частота появления импульсов тока всегда постоянна, но коэффициент заполнения может изменяться в диапазоне 10 – 80 %, что приводит к изменению значения выходного тока. Компактные габариты и высокий КПД (90 – 95 %) обусловили широкое распространение импульсных драйверов. Их главный недостаток — большее число электромагнитных помех (в сравнении с линейными).

На стоимости драйвера сказывается наличие или отсутствие гальванической развязки. В последнем случае устройства обычно дешевле, но надежность значительно ниже из-за вероятности поражения током.

к содержанию ↑

Диммируемый драйвер

Диммер — устройство, позволяющее регулировать яркость источников света. Большинство драйверов поддерживают данную функцию. С их помощью понижается интенсивность освещения в светлое время суток, расставляются акценты на определенных предметах интерьера, выполняется зонирование комнаты. Все это предоставляет возможность снижения затрат на электроэнергию и увеличение ресурса отдельных компонентов.

к содержанию ↑

Китайские драйверы

Дешевые и низкокачественные китайские драйверы характеризуются отсутствием корпуса. Величина выходного тока обычно не превышает 700 мА. На фоне минимальной стоимости и (возможно) наличия гальванической развязки недостатки выглядят куда более серьезными:

  • короткий срок эксплуатации;
  • ненадежность — дешевые элементы для схем;
  • большие радиочастотные помехи;
  • многочисленные пульсации;
  • слабая защита от высокой температуры и повышения/снижения сетевого напряжения.
к содержанию ↑

Как подобрать драйвер

Если хотите получить качественное устройство, которое прослужит несколько лет и будет выполнять требуемые функции, рекомендуем избегать приобретения дешевых китайских изделий. Далеко не всегда физические параметры таковых совпадают с заявленными значениями. Не покупайте приборы, у которых отсутствуют гарантийные талоны.

Самый простой, средний по качеству и цене вариант — преобразователь тока без корпуса, подключаемый к промышленной сети напряжением 220 В. Выбирая ту или иную модификацию устройства, можно использовать его для одного или нескольких светодиодов. Это отличные элементы, применяемые в лабораторных исследованиях и экспериментах. Для квартиры и дома желательно покупать драйверы с корпусом, поскольку при его отсутствии снижаются надежность и безопасность эксплуатации.

к содержанию ↑

Готовые микросхемы преобразователей тока для светодиодных светильников

На рынке можно встретить готовые микросхемы для преобразования тока. Ниже рассмотрим наиболее популярные из всех:

  1. Supertex HV9910 — импульсный преобразователь с током до 10 мА, не поддерживающий развязку.
  2. ON Semiconductor UC3845 — устройство импульсного типа, выходной ток которого равен 1 А.
  3. Texas Instruments UCC28810 — драйвер импульсного типа с поддержкой развязки и выходным током не более 750 мА.
  4. LM3404HV — отличный вариант для питания светодиодов высокой мощности. Работа построена по принципу преобразователя резонансного типа. Для поддержания номинального тока используется резонансная цепь, состоящая из конденсатора и полупроводникового диода Шоттки. При выборе сопротивления RON есть возможность задать требуемую частоту коммутации.
  5. Maxim MAX16800 — линейный драйвер для малого напряжения (12 В). Выходной ток насчитывает не более 350 мА. Данная схема драйвера для светодиодной лампы — отличный вариант для мощного led-диода или фонарика. Поддерживается диммирование.

к содержанию ↑

Самостоятельная сборка преобразователя для светодиодов 220 В

Рассмотренная схема напоминает блок питания импульсного типа. Для примера возьмем простой блок питания импульсного типа, не имеющий гальванической развязки. Главные преимущества подобной схемы — простота и надежность.

При выборе метода действуйте осторожно, поскольку отсутствуют какие-либо ограничения по выходному току. Светодиоды будут питаться от положенных им 1,5 – 2 А, но если по неосторожности коснуться руками оголенных проводов, значение тока вырастет до десятков ампер и произойдет сильный удар.

Простейшая схема преобразователя тока на 220 В содержит три каскада:

  • делитель напряжения с емкостным резистором;
  • несколько диодов (мост);
  • стабилизатор напряжения.

В первом каскаде емкостной резистор используется для самостоятельной подзарядки конденсатора, не имеет отношения к работе самой схемы. Номинал не имеет значения и обычно составляет от 100 кОм до 1 МОм при мощности не более 1 Вт. В этих целях нельзя выбирать электролитический конденсатор.

Ток через конденсатор проходит до тех пор, пока он полностью не зарядится. Чем ниже емкость конденсатора, тем быстрее завершится процесс. Конденсатор на 0,3 мкФ пропустит через себя меньшую часть от общего напряжения сети.

Диодный мост используется для трансформации переменного напряжения в постоянное. После того как конденсатор «отсечет» практически весь вольтаж, диодный мост выдаст постоянный ток с напряжением 20 – 22 В.

На третьем каскаде устанавливают сглаживающий фильтр для стабилизации напряжения. Конденсатор и диодный мост уменьшают напряжение. Любые изменения напряжения в сети сказываются на выходной амплитуде диодного моста. Для уменьшения пульсации параллельно в схему подключают электролитический конденсатор.

к содержанию ↑

Самостоятельная сборка преобразователя на 10 Ватт

Если хотите своими руками соорудить сетевой драйвер для питания мощного светодиода, воспользуйтесь электронными платами от испорченных экономок. Зачастую подобные светильники прекращают работу именно из-за перегоревших ламп, хотя электронная плата продолжает функционировать. Все компоненты могут применяться для создания блока питания, драйвера и прочих электротехнических приборов. В процессе потребуются конденсаторы, диоды, транзисторы и дроссели.

Разберите вышедшую из строя ртутную лампу мощностью 20 Вт (подходит для драйвера на 10 Вт). В таком случае гарантируется, что дроссель выдержит оказываемую нагрузку. С увеличением потребностей мощности для сетевого драйвера придется выбирать более мощную экономку или вместо дросселя воспользоваться аналогом с огромным сердечником.

Выполните 20 витков на обмотке и паяльником подключите ее к выпрямителю (диодному мосту). Подайте напряжение от промышленной сети 220 В и мультиметром измерьте полученное значение на выходе диодного моста. При использовании инструкции получится значение в районе 9 – 10 В. Светодиодный источник потребляет 0,8 А при номинале 900 мА. Поскольку вы будете подавать ток уменьшенного значения, сможете продлить срок эксплуатации led-диода.

к содержанию ↑

Заключение

Несмотря на кажущуюся простоту и надежность, светодиоды более сложны и требовательны, нежели другие источники света. Взять те же источники питания. К примеру, если превысить мощность тока питания люминесцентной лампы на 15 – 25 %, характеристики не ухудшатся. В случае светодиодов срок их эксплуатации снизится в несколько раз. Наличие сетевого драйвера гарантирует подачу одинакового выходного тока независимо от скачков напряжения сети. По этой причине не стоит экономить на покупке данных устройств.

Драйвер для светодиодного светильника: назначение, виды, принцип работы и изготовление

Драйвер для светодиодов: назначение, выбор, подключение, схемы

Широкое распространение светодиодов повлекло за собой массовое производство блоков питания для них. Такие блоки называются драйверами. Основной их особенностью является то, что они способны стабильно поддерживать на выходе заданный ток. Другими словами, драйвер для светодиодов (LED) – это источник тока для их питания.

Назначение

Поскольку светодиод — это полупроводниковые элементы, ключевой характеристикой, определяющей яркость их свечения, является не напряжение, а ток. Чтобы они гарантированно отработали заявленное  количество часов, необходим драйвер, — он стабилизирует ток, протекающий через цепь светодиодов. Возможно использование маломощных светоизлучающих диодов и без драйвера, в этом случае его роль выполняет резистор.

Применение

Драйверы применяются как при питании светодиода от сети 220В, так и от источников постоянного напряжения 9-36 В. Первые используются при освещении помещений светодиодными лампами и лентами, вторые чаще встречаются в автомобилях, велосипедных фарах, переносных фонарях и т.д.

Принцип работы

Как уже было сказано, драйвер – это источник тока. Его отличия от источника напряжения проиллюстрированы ниже.

Источник напряжения создает на своем выходе некоторое напряжение, в идеале не зависящее от нагрузки.

Например, если подключить к источнику напряжением 12 В резистор 40 Ом, через него пойдет ток 300 мА.

Если подключить параллельно два резистора, суммарный ток составит уже 600 мА при том же напряжении.

Драйвер же поддерживает на своем выходе заданный ток. Напряжение при этом может изменяться.

Подключим так же резистор 40 Ом к драйверу 300 мА.

Драйвер создаст на резисторе падение напряжения 12 В.

Если подключить параллельно два резистора, ток по-прежнему будет 300 мА, а напряжение упадет до 6 В:

Таким образом, идеальный драйвер способен обеспечить нагрузке номинальный ток вне зависимости от падения напряжения. То есть светодиод с падением напряжения 2 В и током 300 мА будет гореть так же ярко, как и светодиод напряжением 3 В и током 300 мА.

Основные характеристики

При подборе нужно учитывать три основных параметра: выходное напряжение, ток и потребляемая нагрузкой мощность.

Напряжение на выходе драйвера зависит от нескольких факторов:

  • падение напряжения на светодиоде;
  • количество светодиодов;
  • способ подключения.

Ток на выходе драйвера определяется характеристиками светодиодов и зависит от следующих параметров:

  • мощность светодиодов;
  • яркость.

Мощность светодиодов влияет на потребляемый ими ток, который может варьироваться в зависимости от требуемой яркости. Драйвер должен обеспечить им этот ток.

Мощность нагрузки зависит от:

  • мощности каждого светодиода;
  • их количества;
  • цвета.

В общем случае потребляемую мощность можно рассчитать как

где Pled — мощность светодиода,

N — количество подключаемых светодиодов.

Максимальная мощность драйвера не должна быть меньше .

Стоит учесть, что для стабильной работы драйвера и предотвращения выхода его из строя следует обеспечить запас по мощности хотя бы 20-30%. То есть должно выполняться следующее соотношение:

где Pmax   — максимальная мощность драйвера.

Кроме мощности и количества светодиодов, мощность нагрузки зависит еще от их цвета. Светодиоды разных цветов имеют разное падение напряжения при одинаковом токе. Например, красный светодиод CREE XP-E обладает падением напряжения 1.9-2.4 В при токе 350 мА. Средняя потребляемая им мощность таким образом составляет около 750 мВт.

У XP-E зеленого цвета падение 3.3-3.9 В при том же токе, и его средняя мощность составит уже около 1.25 Вт. То есть драйвером, рассчитанным на 10 ватт, можно питать либо 12-13 красных светодиодов, либо 7-8 зеленых.

Как подобрать драйвер для светодиодов. Способы подключения LED

Допустим, имеется 6 светодиодов с падением напряжения 2 В и током 300 мА. Подключить их можно различными способами, и в каждом случае потребуется драйвер с определенными параметрами:

  1. Последовательно. При таком способе подключения потребуется драйвер напряжением 12 В и током 300 мА. Преимущество такого способа в том, что через всю цепь идет один и тот же ток, и светодиоды горят с одинаковой яркостью. Недостаток заключается в том, что для подключения большого числа светодиодов потребуется драйвер с очень большим напряжением. 
  2. Параллельно. Здесь уже будет достаточно драйвера на 6 В, но потребляемый ток будет примерно в 2 раза больше, чем при последовательном соединении. Недостаток: токи, текущие в каждой цепи, немного различаются из-за разброса параметров светодиодов, поэтому одна цепь будет светить несколько ярче другой. 
  3. Последовательно по два. Тут потребуется такой же драйвер, как и во втором случае. Яркость свечения будет уже более равномерная, но есть один существенный недостаток: при включении питания в каждой паре светодиодов из-за разброса характеристик один может открыться раньше другого, и через него пойдет ток, в 2 раза превышающий номинальный. Большинство светодиодов рассчитаны на такие кратковременные броски тока, но все-таки этот способ наименее предпочтителен.

Соединять таким образом параллельно 3 и более светодиодов недопустимо, так как при этом через них может пойти слишком большой ток, в результате чего они быстро выйдут из строя.

Обратите внимание, что во всех случаях мощность драйвера составляет 3.6 Вт и не зависит от способа подключения нагрузки.

Таким образом, целесообразнее выбирать драйвер для светодиодов уже на этапе закупки последних, предварительно определив схему подключения. Если же сначала приобрести сами светодиоды, а потом подбирать к ним драйвер, это может оказаться нелегкой задачей, поскольку вероятность того, что Вы найдете именно тот источник питания, который сможет обеспечить работу именно этого количества светодиодов, включенных по конкретной схеме, невелика.

Виды

В общем случае драйверы для светодиодов можно разделить на две категории: линейные и импульсные.

У линейного выходом служит генератор тока. Он обеспечивает стабилизацию выходного тока при нестабильном входном напряжении; причем подстройка происходит плавно, не создавая высокочастотных электромагнитных помех. Они просты и дешевы, но невысокий КПД (менее 80%) ограничивает сферу их применения маломощными светодиодами и лентами.

Импульсные представляют собой устройства, создающие на выходе серию высокочастотных импульсов тока.

Обычно они работают по принципу широтно-импульсной модуляции (ШИМ), то есть среднее значение выходного тока определяется отношением ширины импульсов к периоду их следования (эта величина называется коэффициентом заполнения).

На диаграмме выше показан принцип работы ШИМ-драйвера: частота импульсов остается постоянной, но изменяется коэффициент заполнения от 10% до 80%. Это ведет к изменению среднего значения тока Icp на выходе.

Такие драйверы получили широкое распространение благодаря компактности и высокому КПД (около 95%). Основным недостатком является больший по сравнению с линейными уровень электромагнитных помех.

Светодиодный драйвер на 220 В

Для включения в сеть 220 В выпускаются как линейные, так и импульсные. Существуют драйверы с гальванической развязкой от сети и без нее. Основными преимуществами первых являются высокий КПД, надежность и безопасность.

Без гальванической развязки обычно дешевле, но менее надежны и требуют осторожности при подключении, поскольку есть вероятность поражения током.

Китайские драйверы

Востребованность драйверов для светодиодов способствует их массовому производству в Китае. Эти устройства представляют собой импульсные источники тока, обычно на 350-700 мА, часто не имеющие корпуса.

Китайский драйвер для светодиода 3w

Основные их достоинства – низкая цена и наличие гальванической развязки. Недостатки следующие:

  • низкая надежность из-за использования дешевых схемных решений;
  • отсутствие защиты от перегрева и колебаний в сети;
  • высокий уровень радиопомех;
  • высокий уровень пульсаций на выходе;
  • недолговечность.

Срок службы

Обычно срок службы драйвера меньше, чем у оптической части – производители дают гарантию на 30000 часов работы. Это связано с такими факторами, как:

  • нестабильность сетевого напряжения;
  • перепады температур;
  • уровень влажности;
  • загруженность драйвера.

Самым слабым звеном светодиодного драйвера являются сглаживающие конденсаторы, которые имеют тенденцию к испарению электролита, особенно в условиях повышенной влажности и нестабильного питающего напряжения. В результате уровень пульсаций на выходе драйвера повышается, что негативно сказывается на работе светодиодов.

Также на срок службы влияет неполная загруженность драйвера. То есть если он, рассчитан на 150 Вт, а работает на нагрузку 70 Вт, половина его мощности возвращается в сеть, вызывая ее перегрузку. Это провоцирует частые сбои питания. Рекомендуем почитать про срок службы светодиодных ламп.

Схемы драйверов (микросхемы) для светодиодов

Многие производители выпускают специализированные микросхемы драйверов. Рассмотрим некоторые из них.

ON Semiconductor UC3845 – импульсный драйвер с выходным током до 1А. Схема драйвера для светодиода 10w на этой микросхеме приведена ниже.

Supertex HV9910 – очень распространенная микросхема импульсного драйвера. Ток на выходе не превышает 10 мА, не имеет гальванической развязки.

Простой драйвер тока на этой микросхеме представлен ниже.

Texas Instruments UCC28810. Сетевой импульсный драйвер, имеет возможность организовать гальваническую развязку. Выходной ток до 750 мА.

Еще одна микросхема этой фирмы, — драйвер для питания мощных светодиодов LM3404HV — описывается в этом видео:

Устройство работает по принципу резонансного преобразователя типа Buck Converter, то есть функция поддержания требуемого тока здесь частично возложена на резонансную цепь в виде катушки L1 и диода Шоттки D1 (типовая схема приведена ниже). Также имеется возможность задания частоты коммутации подбором резистора RON.

Maxim MAX16800 – линейная микросхема, работает при малых напряжениях, поэтому на ней можно построить драйвер 12 вольт. Выходной ток – до 350 мА, поэтому может использоваться как драйвер питания для мощного светодиода, фонарика, и т.д. Есть возможность диммирования. Типовая схема и структура представлены ниже.

Заключение

Светодиоды гораздо более требовательны к источнику питания, чем другие источники света. Например, превышение тока на 20% для люминесцентной лампы не повлечет за собой серьезного ухудшения характеристик, для светодиодов же срок службы сократится в несколько раз. Поэтому выбирать драйвер для светодиодов следует особенно тщательно.

Что такое драйвер для светодиодного светильника?

28.07.2017

Для бесперебойной работы в светодиодных светильниках необходим источник питания, который будет подключаться к сети. Он называется драйвер для светодиодного светильника. Драйвер выполняет эту функцию, т.к. это и есть источник питания, задача которого — стабилизировать ток и напряжение в сети. Но как правильно подобрать нужный драйвер? Надо обращать внимание на его выходные параметры: параметр тока (в Амперах) и параметр напряжения (в Вольтах). Еще есть параметр мощности нагрузки устройства (W). Драйверы принято подбирать с запасом мощности и в разрешимом диапазоне выходного напряжения и, конечно же, обращать внимание на характеристику стабилизации тока. В противном случае, светильник подлежит утилизации или отправке на ремонт.

От драйвера также зависят такие характеристики, как:

  • уровень пульсации;
  • электробезопасность и др.

Характеристика светодиода определяют световой поток.

Схема подключения светодиодного источника света

Выбор драйвера

Выбор драйвера во многом определяет место, где планируется установка светильника.

Например, в условиях складского помещения для светильника понадобится драйвер с рабочей температурой выше 0◦С и степенью влагостойкости от IP 20. Если освещать будем офис или любое другое административное помещение, где работают люди и нужна высокая освещаемость, то в таком случае надо брать во внимание и коэффициент пульсации: он не должен быть выше 5%. Границы входящего напряжения зависят от конкретных условий. Например, если в помещении установлено большое количество оборудования или оно достаточно мощное, то есть вероятность падения (скачков) напряжения в сети. В этом случае понадобится источник питания с универсальным входом.

Блоки питания и драйверы для светодиодных светильников

Напряжение в сети офисных помещений обычно стабильно, и стандартного диапазона входных напряжений бывает более чем достаточно. Но в любом случае светодиодный светильник нуждается в корректоре коэффициента мощности, потому что прибавочная мощность оказывается выше порога в 25 Ватт. Есть модели, рассчитанные на внутреннее освещение. Это модели светильников PLD-40 и PLD-60. Их коэффициент пульсации не выше 20%, а значит, они подойдут для освещения помещений, не требовательных к яркому освещению. Драйверы таких моделей защищены от короткого замыкания и перегревов, а также имеют полное соответствие требованиям электромагнитной совместимости. Таким образом, примеры моделей PLD-40 и PLD-60 продемонстрировали нам прекрасное соответствие для стандартных светильников без регулировки освещения.

Блок питания PLD-60-1050B для внутреннего светодиодного освещения

Требования к драйверам в зависимости от назначения светильника:

  • Если светильник устанавливается для наружного освещения, то главное требование для его драйвера – это широкий диапазон переносимых температур, гарантирующих исправную работу после длительного нахождения на морозе.

Вдобавок ко всему, здесь придется учитывать и уровень прочности корпуса. Потому что уличный светильник должен иметь абсолютную защиту от любых агрессивных воздействий, таких как пыль, грязь, химические испарения, вода (влагозащищенность должна быть IP 65). Охлаждением комплектующие светильника тоже не должны быть задеты.

Герметичный контроллер с драйвером светодиодного светильника

Блок питания (кроме того, что он должен быть защищен указанным способом) должен обладать широким диапазоном входного напряжения ввиду того, что линии питания весьма нестабильны. Он должен быть надежно защищен от перепадов напряжения.

  • Если светильник устанавливается для освещения дорог, железной дороги, метро, то драйвер у такого светильника должен обладать виброустойчивостью. Этому способствует компаунд, который залит в блоки питания, что позволяет ему не воспринимать вибрации. В противном случае элементы просто отвалятся от платы при первой же вибрационной атаке.

От качества выполнения деталей драйвера зависят все параметры и возможности светильника. Среди них и такие важные, как уровень пульсации, диапазон рабочих температур, устойчивость к скачкам напряжения, температурный диапазон. Вот почему так важно качество комплектующих этого прибора. Как известно, светодиодный светильник led сам по себе является очень надежным осветительным прибором, отличающимся долговечностью. Однако он не сможет пройти весь срок своей службы, если не подойти должным образом к выбору драйвера в светодиодных лампах. Ведь основная причина выхода из строя светильника — не перегоревший светодиод, а плохой драйвер. Именно из-за него вам придется носить светильник на ремонт.

Комплектация светильника и как его подобрать

Обычный светодиодный светильник включает в себя всего несколько элементов:

  • светодиоды;
  • корпус;
  • теплоотвод;
  • радиатор;
  • драйвер.

Если комплект стандартный, как же тогда подобрать светильник, чтобы его предустановленный драйвер прослужил как можно дольше?

Как мы уже выяснили, драйвер необходим в целях стабилизации тока, который питает светодиоды, мощностью 1 Ватт.

Встраиваемый светодиодный светильник Kreonix с драйвером

Для исправной работы светодиодов от источника питания необходимо понизить напряжение. У каждого светильника есть следующие параметры, которые необходимо учитывать при выборе оптимального драйвера. Поговорим о них подробнее:

  • Мощность. Максимальная мощность у драйвера показывает, какую максимальную нагрузку он выдержит. К примеру, если на маркировке указанно (30х36)х1W, это значит, что к этому драйверу можно подключить 30 или 36 светодиодов мощностью 1 Ватт. Если мы говорим о подключении светодиодной ленты на 12-24 Вольт, то следует учесть, что источники питания для них ограничивают напряжение, а вовсе не ток.
Схема подключения светодиодных лент

А значит, мы должны внимательно следить за мощностью нагрузки, подключенной к блоку питания. В таком случае мощность драйвера ни в коем случае не должна быть ниже мощности цепи, иначе блок питания просто «сгорит».

  • Номинальные параметры тока и напряжения. Этот параметр указывается производителем на всех светодиодах, соответственно, и драйвер необходимо подбирать по этой отметке. Максимальный номинальный ток составляет 350 мА. При такой отметке в работе надо использовать источник питания с силой тока в интервале 300-330 мА. Это справедливо для любого вида подключения. Такой диапазон рабочего тока рекомендован для того, чтобы не сократить срок годности светильника, ведь теплоотвод может не выполнять свои функции в полной мере.
  • Класс герметичности и влагостойкости (защищенности). В настоящее время класс защиты определяется двумя цифрами, стоящими после IP. Первая цифра говорит о степени защиты от твердых воздействий (пыли, грязи, песка, льда). Вторая – о жидких средах (воде, веществах). Однако о требуемой температуре, при которой светильник может использоваться класс IP, ничего не сообщает. Можно или нельзя охлаждать, зависит от прочности корпуса.

Надо с не меньшей ответственностью подходить к покупке драйвера для светильника, чем к покупке самого светильника, потому что именно источник питания является гарантом долгой, исправной службы всего устройства. Если вы никак не можете выбрать подходящий драйвер для светильников, то его можно сделать своими руками. Схема сборки весьма проста.


Смотрите также