Альтернативные источники энергии для детей


Научно-исследовательский проект "Альтернативные источники энергии"

Человек не может жить без энергии. Посмотрите вокруг себя – энергия нужна для освещения, отопления, для работы электрических приборов. Энергия нужна и для работы заводов, фабрик, кораблей, машин, самолетов и для много чего другого. В настоящее время в качестве основных источников энергии используют уголь, нефть и природный газ. Но у этих источников энергии есть минусы. Они являются исчерпаемыми ресурсами и когда-нибудь могут закончиться. А еще при их переработке выделяется углекислый газ и другие вредные вещества, которые вредят окружающей среде. Мне стало интересно, есть ли другие источники энергии? Которые не кончаются и не вредят окружающей среде? Оказывается, есть. Такие источники энергии называются альтернативными. Я решил узнать о них поподробнее.

Цель работы:

Изучить альтернативные источники энергии, их достоинства и   недостатки; Получить самому энергию от альтернативных источников.

Задачи:

Изучить информацию о различных видах энергии Выяснить принцип получения энергии из альтернативных источников Получить энергию из альтернативных источников самому Выяснить, какие достоинства и недостатки есть у альтернативных источников энергии   

Техника безопасности

Все источники энергии, которые я изучал, вырабатывают электрический ток. Электрический ток не видно, не слышно, и он не пахнет. Поэтому он очень опасен. При работе с ним нужно соблюдать технику безопасности.   1. Нельзя трогать неизвестные провода и детали руками 2. Нельзя работать с мокрыми или грязными руками 3. Ничего нельзя брать в рот 4. Нельзя замыкать электрическую цепь без работающего прибора 5. Выполнять все работы под наблюдением взрослых

Какие источники энергии бывают?

Источники энергии можно разделить на две группы – традиционные и нетрадиционные или альтернативные.

Традиционные источники энергии

- Уголь - Нефть - Торф - Газ - Дерево (дрова) Традиционные источники энергии широко используются в настоящее время. Но, как я уже говорил, эти источники исчерпаемые и  при их переработке в окружающую среду выделяются вредные вещества.   Нетрадиционные источники энергии = Альтернативные - Ветер - Вода - Солнце - Механическая энергия Об этих источниках энергии я расскажу вам поподробнее.

Энергия ветра

Силу ветра люди научились использовать очень давно. При помощи силы ветра плавали суда, строили ветряные мельницы для переработки зерна. В засушливых областях Европы ветряные мельницы использовали для орошения полей. Первая в мире современная ветроэлектростанция была построена в Курске в 1931 году. Мне стало интересно, смогу ли я добыть энергию, используя силу ветра. Я решил с помощью конструктора получить энергию ветра. Для этого мне понадобились: -плата -провода -специальный моторчик -пропеллер  -кнопка -аккумулятор -амперметр -часы   Я направлял на пропеллер воздух. Сначала дул, а потом с помощью фена создал более сильный поток воздуха. Чем быстрее крутился пропеллер, тем больше энергии вырабатывалось. От моего моторчика работали только часы и светодиод. Вывод: Я сделал вывод, что с помощью ветра можно получить энергию.  

Я решил узнать, какие недостатки и достоинства есть у получения энергии с помощью ветра.

Достоинства

Недостатки

Не выделяет вредных веществ в окружающую среду

Производит много шума Гибнут птицы и насекомые

Энергия ветра не кончается

Строить их нужно только там, где часто дуют ветра

Занимает мало места

Невысокий выход электроэнергии

В нашем городе часто дуют ветра, поэтому на возвышениях строят ветрогенераторы. Сколько раз я смотрел на них, у них всегда крутились лопасти. Сейчас их только два, но скоро собираются поставить еще один.

Энергия воды

Силу воды люди научились использовать очень давно. Они использовали энергию падающей воды на мельницах, чтобы молоть зерно, или для приведения в действие кузнечных мехов и молота. Сейчас практически вся механическая энергия, создаваемая гидротурбинами, преобразуется в электроэнергию. А первую гидроэлектростанцию запустили в Англии в 1878 году. Мне стало интересно, как устроена гидроэлектростанция. Плотина образует водохранилище и обеспечивает постоянный напор воды. Вода входит в водоприемник, проходит по водонапорному водопроводу и вращает турбину. Турбина приводит в действие гидрогенератор. Полученная генератором  энергия повышается трансформаторами и передается на линии электропередач. Мне стало интересно, смогу ли я добыть энергию при помощи воды? Я решил с помощью конструктора получить энергию воды. Для этого мне понадобились: -плата -провода -специальный моторчик -водяное колесо  -кнопка                 -аккумулятор -амперметр -часы  Чем быстрее крутилось водяное колесо, тем больше энергии вырабатывалось. От моего моторчика работали только часы и светодиод. Вывод: Я сделал вывод, что с помощью воды можно получить электроэнергию.

Я решил узнать достоинства и недостатки получения энергии с помощью воды.

Достоинства

Недостатки

 Не выделяет вредных веществ в окружающую среду

Затопление пахотных земель

Энергия воды не кончается

Строить их нужно только там, где есть большие запасы воды

Очень дешевая электроэнергия

Влияет на экосистемы рек

Быстрый выход на получение энергии

В нашей области тоже есть гидроэлектростанция – на берегу Ириклинского водохранилища.

Энергия солнца

Энергию солнца люди научились использовать не так давно, но в наше время практически каждый может собрать и получить в свое распоряжение свой независимый источник электроэнергии на солнечных батареях. Люди придумали много вещей на солнечных батареях: игрушки, калькуляторы, машины, самолеты, солнечные электростанции. Мне стало интересно, смогу ли я добыть энергию солнца? Я решил с помощью конструктора получить энергию солнца. Для этого мне понадобились: -плата -провода -специальный моторчик -солнечный аккумулятор -кнопка -аккумулятор -амперметр -часы -моторчик Чем ярче светило солнышко, тем больше энергии вырабатывалось. От моего моторчика работали только часы, светодиод, маленький моторчик. Вывод: Я сделал вывод, что можно получить электричество от энергии Солнца.  

Я решил узнать, какие достоинства и недостатки получения электроэнергии от Солнца.

Достоинства

Недостатки

 Не выделяет вредных веществ в окружающую среду

Занимает большую площадь

Энергия солнца не кончается

Строить их нужно только там, где солнечно

Быстрый выход на получение энергии

Имеет ограниченную мощность

У нас в городе тоже построили солнечную электростанцию. Я очень хочу съездить посмотреть на нее.

Механическая энергия (мускулы человека)

Электричество можно получить и от силы человека. Для этого мне понадобились: -плата -провода -специальный моторчик -ручной генератор -кнопка -аккумулятор -амперметр -часы -пропеллер Когда крутишь ручной генератор, пропеллер крутится. Но человек не может долго крутить пропеллер, он устает. Поэтому есть автоматические системы. Даже есть такие велосипеды, когда человек крутит педали и вырабатывает энергию.

Занятие на тему: «Альтернативные (возобновляемые) источники энергии»

Занятие на тему: «Альтернативные (возобновляемые) источники энергии»

Цель: формирование у учащихся знаний об основных видах альтернативных источников энергии.

Задачи:

изучить возобновляемые источники энергии (преимущества перед традиционными источниками, достоинства, недостатки, возможность использования на территории Республики Беларусь);

выработать умения анализировать полученную информацию и делать обоснованные выводы;

содействовать развитию мыслительных операций: анализ, синтез, сравнение;

содействовать повышению информированности учащихся в вопросах энерго- и ресурсосбережения;

способствовать воспитанию у учащихся бережного отношения к потребляемой электроэнергии.

Педагогические формы: коллективная, групповая.

Педагогические методы: рассказ, демонстрация, беседа, игра.

Оборудование: мультимедийная установка (презентация «Альтернативные источники энергии»), карточки с заданиями.

План проведения:

1. Организационная часть

2. Мотивационная беседа

3. Основная часть (изучение нового материала)

4. Закрепление нового материала

5. Рефлексия

1. Организационная часть. Приветствие. Проверка готовности кабинета и учащихся к занятию. Формулировка и пояснение основной цели занятия.

2. Мотивационная беседа. Педагог проводит устный опрос по выявлению возможных знаний у учащихся по альтернативным источникам энергии. Дополняя ответы более подробными фактами, педагог мотивирует учащихся к формированию устойчивого познавательного интереса в сфере энергосбережения.

Вопрос: Человечество традиционно использует невозобновляемые источники энергии. А их в природе хотя и много, но все же ограниченное количество. Какие вы знаете не возобновляемые источники энергии?

Ответ: Это вода, газ, нефть, полезные ископаемые, лес, уголь.

Вопрос: А какие вы знаете возобновляемые источники энергии?

Ответ: Энергия солнца, энергия ветра, энергия воды.

Дополнение педагога: Эти способы использования энергии известны уже давно, и они довольно популярны. Но есть ещё некоторые источники энергии, которые пока не получили широкого распространения, но имеют большой потенциал для дальнейших разработок и применения в быту. Например: использование теплоты земли и переработка отходов для получения биогаза.

3. Изучение нового материала.

Возобновляемая или альтернативная энергия («Зеленая энергия») – энергия из источников, которые, по человеческим масштабам, являются неисчерпаемыми. Основной принцип использования возобновляемой энергии заключается в её извлечении из постоянно происходящих в окружающей среде процессов и предоставлении для технического применения. Возобновляемую энергию получают из природных ресурсов, таких как: солнечный свет, водные потоки, ветер, приливы и геотермальная теплота, которые являются возобновляемыми или пополняются естественным путём.

Возобновляемые источники энергии можно сгруппировать следующим образом: энергия солнца, энергия ветра, энергия воды, энергия биомассы и энергия земли. Соответственно будут развиваться отрасли возобновляемой энергии – гелиоэнергетика (с использованием энергии солнца), гидроэнергетика (с использованием энергии воды), ветроэнергетика (с использованием энергии ветра), биоэнергетика (с использованием энергии биомассы) и геотермальная энергетика (с использованием энергии, находящейся в недрах земли).

Энергия солнца. Первичным источником каждого из природных видов возобновляемой энергии на земле является солнце. Почти вся энергия, которую мы потребляем, исходит от солнца. Даже такие не возобновляемые ее источники, как нефть, уголь и газ, образовались благодаря энергии солнца. За 15 минут оно посылает нам столько энергии, что ее хватило бы человечеству на целый год, а энергия, получаемая земным шаром от солнца за год, в 15000 раз превышает годовое потребление человечества. Для преобразования солнечного излучения в электроэнергию используются солнечные батареи. Солнечные батареи не требуют особого обслуживания и могут работать более 20 лет. Одной из причин, сдерживающей использование солнечных батарей, является их высокая стоимость.Сегодня фотоэлементы применяются для обеспечения бесперебойного электроснабжения сотовых базовых станций и метеорологических пунктов. Наибольшее распространение солнечная энергетика получила в США и Китае.

Достоинства:

1. Перспективность, доступность и неисчерпаемость источника энергии.

2. Теоретически, полная безопасность для окружающей среды, хотя существует вероятность того, что повсеместное внедрение солнечной энергетики может изменить альбедо (характеристику отражательной (рассеивающей) способности) земной поверхности и привести к изменению климата (однако при современном уровне потребления энергии это крайне маловероятно).

Недостатки:

1. Зависимость от погоды и времени суток.

2. Сезонность в средних широтах и несовпадение периодов выработки энергии и потребности в энергии.

3. Необходимость аккумуляции энергии.

4. Высокая стоимость конструкции, связанная с применением редких элементов (к примеру, индий и теллур).

5. Необходимость периодической очистки отражающей (поглощающей) поверхности от загрязнения.

6. Необходимость использования больших площадей.

К сведению учащихся: крупная солнечная электростанция Беларуси находится в Мядельском районе. Занимает площадь около 15 гектар и состоит из 22 600 солнечных панелей. Электростанция находится в 500 метрах от трассы Вильнюс-Полоцк.В Сморгони идёт строительство солнечной электростанции мощностью 17 МВт.

Энергия ветра. Ветер – это движение воздуха в атмосфере, возникающее от разности давлений у поверхности земли и границы атмосферы. Человечество с давних времен научилось использовать энергию ветра: с помощью парусов в морских судах, ветряных мельниц для помола зерна и т.п.

Ветроэнергетика – отрасль энергетики, которая специализируется на преобразовании энергии воздушных масс в электрическую, механическую и др.

Сегодня ветер используется в современных ветровых турбинах для выработки электричества.

 Возможность производства электроэнергии определяется конструкцией ветровых турбин. Все ветровые турбины состоят из лопастей, которые вращают ось, соединенную с генератором, который и производит электрический ток.

Ветровые турбины могут быть расположены практически везде, где есть ветер, например, на море, на суше и в застроенном месте.

Достоинства:

1. Перспективность, доступность и неисчерпаемость источника энергии.

2. Экологичность.

3. Ветровые электростанции занимают совсем немного места и вписываются в любой ландшафт.

4. Ветровая энергетика – лучшее решение для труднодоступных мест: для удалённых мест установка ветровых электрогенераторов может быть лучшим и более дешёвым решением.

Недостатки:

1. Непостоянность: на некоторых участках суши силы ветра может оказаться недостаточно для выработки нужного количества электроэнергии.

2. Условно низкий выход электроэнергии, что приводит к необходимости установки сразу нескольких турбин.

3. Немалая стоимость.

4. Опасность для живой природы: по статистике, лопасти каждой установленной турбины являются предпосылкой погибели не менее 4 особей птиц в год.

5. Шумовое загрязнение.

К сведению учащихся: в мае 2011 года была запущена первая в стране ветроэнергетическая установка (2 км от Новогрудка) мощностью 1,5 МВт. Выработка электроэнергии составляет около 3,8 млнкВт•ч в год, что обеспечит бытовые потребности населения райцентра.

Энергия воды – энергия, сосредоточенная в потоках водных масс в русловых водотоках и приливных движениях. Чаще всего используется энергия падающей воды. Для повышения разности уровней воды, особенно в нижних течениях рек, сооружаются плотины. Больше всего гидроэлектроэнергии производят Китай, США, Индия, Россия, Япония.

Достоинства:

1. Перспективность, доступность и неисчерпаемость источника энергии.

2. Экологичность.

Недостатки:

1. Затопление пахотных земель.

2. Строительство ведётся там, где есть большие запасы энергии воды.

3. Разрушение экосистем, исчезновение некоторых видов организмов.

К сведению учащихся:крупнейшая гидроэлектростанция РБ – Гродненская (17 МВт, 84,4 млнкВт·ч). Идет строительство Витебской(40 МВт, 138 млнкВт·ч) и Полоцкой (23 МВт, 110 млн кВт·ч), планируется строительство ещё трёх гидростанций: Верхнедвинской (13 МВт, 78 млнкВт·ч), Бешенковичской (33 МВт, 130 млн. кВт·ч) и Неманской (до 23 МВт и 150 млн кВт·ч в год).

Энергия биомассы. К основным источникам биомассы как в глобальном, так и региональном масштабе относятся: биомасса сопутствующей лесной продукции, твердые производственные и бытовые отходы, сельскохозяйственные остатки, специальные быстрорастущие энергетические культуры (рапс, ива, тополь и т.д.). Биогаз – это летучее вещество без цвета и какого-либо запаха, в котором содержится до 70% метана. По своим качественным показателям он приближается к традиционному виду топлива – природному газу. Для получения биогаза нужен герметичный реактор без доступа воздуха, где будет происходить процесс брожения навоза и разложения его на составляющие. Образовавшиеся газы поднимаются вверх, откуда их затем выкачивают, а вниз оседает остаточный продукт – высококачественное органическое удобрение, сохранившее в результате обработки все ценные вещества, имеющиеся в навозе – азот и фосфор.

Достоинства:

1. Экологичность.

2. Перспективность, доступность, низкая стоимость.

3. Использование полученных веществ в качестве удобрений.

Недостатки:

1. Биомасса обладает большой влажностью, следовательно требует дополнительных затрат для сушки. Чаще всего биомасса требует предварительной подготовки (измельчение, прессование, брикетирование и т.п.).

2. Сжигание биомассы все же приводит к выбросу некоторого количества различных (в зависимости от типа используемой биомассы) загрязняющих атмосферу веществ. Наиболее распространены оксиды азота. При прямом сжигании древесины может выделяться значительное количество оксидов углерода и пыли (дисперсных частиц).

3. Повышенные требования безопасности.

К сведению учащихся: в РБ действует больше десяти биогазовых установок. Самая крупная – СПК «Рассвет» мощностью 4,8 МВт.

Геотермальная энергия – это энергия тепла, которая выделяется из внутренних зон земли на протяжении сотен миллионов лет. Извержение тысяч вулканов, движение блоков земной коры, землетрясения свидетельствуют о действии мощной внутренней энергии земли. Человек может использовать геотермальную энергию только там, где она проявляет себя близко к поверхности земли, т.е. в районах вулканической и сейсмической активности.На сегодняшний день мировыми лидерами в геотермальной электроэнергетике являются США, Филиппины, Мексика, Индонезия, Италия, Япония, Новая Зеландия и Исландия.

Достоинства:

1. Практическая неиссякаемость и полная независимость от условий окружающей среды, времени суток и года.

2. Экологичность.

Недостатки:

1. Необходимость закачки воды в подземные горизонты.

2. Содержание токсичных металлов в воде источника.

3. Сложность с поиском подходящего места для строительства геотермальной электростанции.

К сведению учащихся: под Брестом построена первая в РБ геотермальная станция на территории комбината «Берестье». Было решено получаемую энергию, использовать для обогрева теплиц.

4. Закрепление. Ведется обсуждение, анализ каждого вида энергии, его достоинств и недостатков. В результате у учащихся получается сводная таблица по всем видам энергии.

Оценка источников энергии

Солнце

Ветер

Геотермальные

источники

Реки

Биомасса

Аргументы «ЗА»

Аргументы «ПРОТИВ»

Пример: Солнце

Аргументы «ЗА»: неисчерпаемость, доступность, экологичность.

Аргументы «ПРОТИВ»: большие размеры, зависимость от погоды, необходимость накопления энергии и т.д.

Далее учащиеся играют в «Энергетическое лото». Группа делится на пять подгрупп. Каждая подгруппа по очереди (очередность определяется методом жеребьевки) выбирает источник энергии на игровом поле и получает соответствующее задание на карточке. Выбранная категория далее в игре не участвует.Учащиеся озвучивают подготовленные ответы. Проводится обсуждение результатов и корректировка.

Педагог подводит итог занятия.

5. Рефлексия. Используется прием незаконченного предложения. Учащиеся по очереди высказываются одним предложением, выбирая начало фразы из рефлексивного экрана на доске:

1. Сегодня я узнал…;

2. Было интересно…;

3. Было трудно…;

4. Я понял, что…;

5. Было скучно…;

6. Я приобрел…;

7. Я научился…;

8. У меня получилось…;

9. Я смог…;

10. Меня удивило…;

11. Мне захотелось….

Альтернативная энергия для дома: современные источники энергетики

“Зеленая энергетика” привлекает просто космическими перспективами. Из окружающей среды можно получать совершенно бесплатно неисчерпаемую энергию для обслуживания автономных коммуникаций. Причем ее ресурс ежедневно восстанавливается без участия человека.

Однако для того чтобы грамотно пользоваться настоящими подарками природы, нужно знать, как они работают и где применяются. Согласны?

Все о том, как используется альтернативная энергия для дома, вы узнаете из представленной нами статьи. Ознакомившись с материалом, вы сможете выбрать максимально подходящий вариант получения тепла или электричества.

Мы детально описали установки, перерабатывающие энергию солнца/ветра/воды/земли. Кратко и предельно просто изложили принцип их работы. Предложенные сведения помогут сравнить способы и источники получения энергии.

Виды альтернативных источников энергии

Приобрести промышленные модели современных устройств для извлечения тепловой или электрической энергии из окружающей среды не так уж и сложно.

К самым популярным вариантам такого оборудования можно отнести:

  • солнечные батареи;
  • солнечные коллекторы;
  • ветрогенераторы;
  • тепловые насосы;
  • генераторы биогаза.

Наука на месте не стоит, появляются все новые модели устройств для получения альтернативной энергии. Важно не только выбрать подходящий вариант, но и правильно его установить. Очень часто обойтись только каким-то одним агрегатом не удается. Можно совмещать использование различных ресурсов.

Например, солнечная батарея дает больше электроэнергии в летний период, а ветрогенератор – в зимний. Сочетание этих двух устройств позволяет обеспечить достаточным количеством автономной электроэнергии в течение всего года. Подобным образом можно также комбинировать и другие устройства.

#1: Использование солнечных батарей

Эти элементы становятся все популярнее и разнообразнее. Их продают как в виде готовых комплектов, так и в виде отдельных фотоэлементов. С последними охотно работают мастера-аматоры, которые все предпочитают делать своими руками – это относительно несложная задача.

Чтобы изготовить солнечную батарею с индивидуальными параметрами, следует приобрести нужное количество готовых фотоэлементов и спаять их в общую цепь.

Прозрачные элементы, закрывающие рабочую поверхность солнечных батарей, устанавливают на стекла высотных зданий, но их можно успешно применять и в частном домостроении

Различают монокристаллические и поликристаллические фотоэлементы. Первые более производительны и долговечны, но эффективны лишь при условии получения стабильного потока энергии. У поликристаллов КПД пониже, и срок эксплуатации поменьше, но они могут вполне эффективно работать даже в условиях повышенной облачности.

Фотоэлементы помещают под слоем прочного прозрачного материала, чтобы они могли поглощать энергию и при этом оставались в нужном положении. Корпус с прозрачной внешней поверхностью выглядит как рамка из металла. Он используется для закрепления панелей.

Иногда вместо металлического корпуса используют деревянную конструкцию. Это менее долговечный, но вполне приемлемый вариант.

Панели с фотоэлементами солнечных батарей устанавливают на самой солнечной стороне здания, обычно – на крыше. Важно также правильно подобрать инвертор и аккумуляторы

Конструкция с солнечными батареями получается довольно громоздкая, поэтому чаще всего ее ставят прямо на крыше дома. Корпус монтируют на подставке таким образом, чтобы панель с фотоэлементами можно было поворачивать, это позволит следить за движением солнца и улавливать больше УФ лучей в зависимости от времени года.

При выпадении обильных осадков панель разворачивают в вертикальное положение, чтобы предотвратить ее повреждение и уменьшить возможное загрязнение. Установка панелей – только первый этап реализации подобной системы.

Для ее полноценной работы понадобится подключить фотоэлементы через зарядное устройство к солнечной инверторной системе.

Чтобы накапливать полученную электрическую систему, понадобятся аккумуляторы для солнечных панелей, например, SUNLIGHT PzS. Такие элементы можно установить под землей, на довольно значительной глубине – до трех метров.

Правильный подбор инвертора для солнечных батарей и контроллера аккумуляторов – важный момент в обеспечении максимальной эффективности всей системы. Чем лучше подобраны все составляющие, чем качественнее выполнены специальные расчеты, тем меньше будут потери электрической энергии.

Интересный вариант солнечных батарей – гибкий пленочный вариант, рабочий слой их нанесен на полимерную пленку. Их устанавливают на стекла окон высотных зданий, разумеется, на самой солнечной стороне.

КПД таких элементов немного ниже, чем у традиционного варианта – всего 7%. Но удобство от их использования и экономия места компенсируют этот недостаток.

Устройство Betaray для усиления потенциала улавливаемой солнечной энергии выглядит стильно и современно. Его можно установить во дворе частного дома или на крыше многоэтажки

Современно и необычно выглядит устройство под названием Betaray. Это довольно большой стеклянный шар, который как линза собирает солнечные лучи и направляет их к панели с фотоэлементами. Установка способна вращаться в автоматическом режиме, чтобы получить максимум солнечных лучей.

В результате можно обойтись меньшим количеством фотоэлементов и сделать поток солнечных лучей более стабильным. В ночное время Betaray способна поглощать лунный и звездный свет. Это немного, но хватит, чтобы обеспечить полноценное уличное освещение. В целом у этого устройства впечатляющий для солнечных батарей КПД – 35%.

Полезные советы по выбору, монтажу и эксплуатации солнечных батарей представлены здесь:

#2: Применение солнечных коллекторов

Это более современная и производительная вариация летнего душа. Даже на самой скромной даче имеется бочка с водой, которая нагревается в течение дня до вполне приличного уровня.

Если установить на крыше систему из узких труб, по которым циркулирует вода, можно получить ощутимое количество тепла, полностью обеспечив дом горячим водоснабжением и даже вполне достойным отоплением.

Солнечный коллектор представляет собой систему узких труб, по которым циркулирует жидкий теплоноситель. Естественные конвекционные процессы обеспечивают циркуляцию воды, нагретой солнцем, без применения насоса (+)

Работа этого альтернативного источника энергии основана на способности воды циркулировать при нагреве. Бак теплообменника устанавливают на более высоком уровне, чем трубы коллектора. Нагретая вода поднимается вверх и поступает в верхнюю часть змеевика теплообменника.

Остывая при контакте с водопроводной водой, теплоноситель солнечного коллектора опускается вниз и снова перемещается в трубы, которые нагревает солнце.

Естественная циркуляция нагревающейся и охлаждающейся воды позволяет обойтись без специальных насосов или другого электрического оборудования.

Сделать простейший вариант такой системы можно из доступных материалов: труб разного диаметра, металлического листа на роль основы. Подставку, к которой крепят основу, можно сделать из уголка или иных металлических элементов.

В этом варианте самодельного солнечного коллектора трубы приварены к металлическому основанию, в качестве рамки использована толстая доска

Обычно ту часть системы, которая находится снаружи, окрашивают в черный цвет, чтобы повысить ее способность к поглощению тепла. Основу с трубами закрепляют таким образом, чтобы можно было изменять угол ее наклона.

Остается устроить бак теплообменник, поместить в него змеевик и соединить элементы системы друг с другом и с системой водоснабжения и/или отопления.

Подробная технология изготовления солнечного коллектора для отопления описана в этой статье.

Промышленные модели солнечных коллекторов намного производительнее, чем “самоделки”, и могут работать круглый год, но стоимость такой системы может оказаться довольно высокой

Конечно, современные солнечные коллекторы промышленного производства устроены сложнее и работают эффективнее. В некоторых устройствах в качестве теплоносителя используется фреон, позволяющий получать тепловую энергию даже во время холодов.

Промышленные агрегаты могут быть снабжены вакуумными трубками, блоком с фотоэлементами, датчиками температуры, системой автоматического управления и т.п. Стоимость такого коллектора может оказаться весьма внушительной.

#3: Эксплуатация энергии ветра

Ветрогенераторы – устройства известные давно и довольно популярные у поклонников экологически чистой энергии. Это достаточно громоздкое устройство, особенно если лопасти ветряка вращаются в горизонтальной плоскости. Поэтому версии с вертикально расположенными лопастями более популярны.

Ветрогенераторы – это достаточно громоздкие изделия, которые следует установить на открытой местности, которая хорошо продувается ветрами. Одно такое устройство может полностью покрыть потребности частного дома в электроэнергии

Ветряк размещают на высокой и прочной стойке. Движение лопастей передается на генератор, полученная энергия накапливается в аккумуляторе. Затем электроэнергия передается на внутреннюю электрическую систему дома или используется иным образом.

Промышленные модели современных ветрогенераторов обычно снабжены удобным электронным пультом управления.

Самодельные устройства конструируют по достаточно простым схемам и чертежам. В интернете можно найти немало вариантов самого разного типа и вида. Нужно выбрать удобное место для размещения такой конструкции, где дует сильный ветер, и агрегат не станет никому мешать. Чем выше установлены лопасти, тем лучше.

Мобильная ветротурбина Uprise имеет относительно компактные размеры, в собранном виде ее можно транспортировать по дорогам общего пользования

Не так давно компания Uprise представила оригинальную разработку – ветровую турбину, установленную на передвижную платформу. При желании устройство можно собрать, придав ему компактные размеры, а затем перевезти с помощью обычного внедорожника и установить в другом месте.

Мощность мобильной ветротурбины Uprise составляет 50 кВт. По оценкам специалистов в области альтернативной энергетики этого вполне достаточно, чтобы обеспечить электроэнергией не самый большой частный дом, да еще и с соседями поделиться излишками электричества.

Еще более оригинальный вариант преобразования энергии ветра в киловатты – летательный аппарат Makani Power.

Makani Power – это приспособление, которое позволяет поднять набор небольших ветротурбин на значительную высоту и получить максимальное количество электроэнергии

Это высоконаучная вариация воздушного змея, на который установлены небольшие ветровые турбины. Идея состоит в том, чтобы доставить генератор в верхние слои атмосферы, где скорость воздушного потока значительно выше, чем у земли. Энергия поступает вниз по кабелю, который также выполняет функции веревки, удерживающей “воздушного змея”.

Интересный обзор ремонта ветрогенератора SF-600-5 (Китай) позволяет составить представление о возможных проблемах с техникой эконом-класса:

Интересные идеи самостоятельного изготовления ветряка описаны в статье – Как сделать ветрогенератор своими руками: устройство, принцип работы + лучшие самоделки

#4: Отопление на основе тепловых насосов

Эти устройства давно заняли почетное место в семействе приспособлений для получения экологически чистой энергии. Работает тепловой насос примерно так же, как холодильник или кондиционер, но только наоборот.

Используют приборы такого типа, главным образом, для обогрева жилища, а также для подогрева воды. Хотя существуют и модели, которые в летнее время успешно справляются с обязанностями кондиционера.

Принцип работы теплового насоса основан на поглощении тепловой энергии с низким потенциалом в концентрированное высокопотенциальное тепло. Устройства типа “земля-вода” сложны в монтаже, но эффективны

В качестве источника тепла такие системы используют энергию воздуха, тепло грунта и воды. Энергия есть везде, но в этих ресурсах она имеет низкий потенциал. Наружный контур теплового насоса собирает эти рассеянные крохи тепловой энергии и перемещает их в систему.

Для трансформации энергии в высокопотенциальное состояние используют хладагент, обычно фреон. Он поглощает полученную энергию, нагревается и поступает в компрессор. Здесь хладагент сжимается и через испаритель поступает в теплообменник внутреннего контура отопления.

Теплоноситель поглощает концентрированную тепловую энергию, а фреон проходит через испаритель и снова переходит в жидкое состояние. Теперь он получает низкопотенциальную энергию, нагревается и т.д.

В зависимости от источника тепловой энергии, а также от вида теплоносителя выбирают и тип теплового насоса: “земля-вода”, “вода-вода”, “воздух-вода”, “воздух-воздух” и т.п. С помощью такого устройства можно реализовать не только традиционное водяное отопление, но и воздушное.

Многие умельцы успешно освоили самостоятельное изготовление подобного агрегата, интересные варианты описаны в следующих статьях:

Извлекать тепло из земли – не самая простая задача, поскольку понадобится просторный земельный участок и обширные земельные работы. Трубы наружного контура укладывают в траншеи и засыпают землей. Понятно, что использование этого участка в дальнейшем будет ограничено.

Внешний блок теплового насоса типа “воздух-вода” нужно просто установить на подходящей площадке, но такое устройство может быть не слишком эффективно при низкой температуре наружного воздуха

Но таким образом можно обеспечить стабильную температуру теплоносителя в наружном контуре, а это важное условие для успешной работы теплового насоса. Очень удобно, если рядом с домом имеется водоем, наружный контур можно погрузить в воду без особых проблем. В качестве альтернативы водоему используют водяную скважину.

Для забора тепла из воздуха используются не трубы с жидким теплоносителем, а мощные вентиляторы, которые нагнетают воздух в теплообменник. Температура наружного воздуха далеко не так постоянна, как в вариантах с водой или землей, но зато подобрать место для агрегата и выполнить монтаж значительно проще.

К сожалению, такие устройства малоэффективны в северных районах, поскольку обогрев невозможен уже при -20 градусах температуры наружного воздуха. Проблему решают путем сочетания двух различных систем отопления.

#4: Биогаз в работе коммуникаций

Отходы – еще один интересный ресурс для получения тепловой энергии. При переработке отбросов с помощью анаэробных бактерий выделяются такие вещества, как метан, сероводород, углекислота и некоторое количество примесей.

Эту газовую смесь называют биогазом, ее также можно рассматривать в качестве современного альтернативного источника энергии.

Для переработки в биогенераторе обычно используют смесь из отходов растительного и животного происхождения с водой. Влажность массы должна составлять 88-96% в зависимости от времени года

Конечно, получают это горючее вещество не из содержимого канализации. Для этого используют органические отходы животного или растительного происхождения. Их помещают в специальную емкость, очень прочную и обязательно герметичную. Туда же загружают бактериальные культуры.

Внутри устройства устанавливают шнек, чтобы перемешивать биологическую массу. Это увеличит скорость реакции и сделает работу генератора более эффективной.

Массу, предназначенную для переработки, разбавляют водой, которая должна быть подогрета примерно до 40°С. В летнее время следует доливать больше воды, но в зимний период влажность биомассы может составлять около 90%.

Чтобы поддерживать комфортную для жизнедеятельности микроорганизмов температуру, емкость биогенератора покрывают теплоизоляционными материалами. Все исходные материалы загружают через горловину, которую после этого плотно закрывают. Биогаз скапливается в верхней части устройства и отводится из него по специальному патрубку.

Для удобства, экономии места и безопасности биогазовые установки помещают под землей, распределение газа осуществляется через гидрозатвор, обязательно нужно обеспечить подогрев биомассы (+)

Переработанные отходы выгружают через отдельный патрубок, они представляют собой ценное удобрение, применение которому можно найти на участке. Важный момент при самостоятельном создании биогенератора – безопасность. Поскольку газ постоянно накапливается в емкости, там постоянно повышается давление.

Процесс самостоятельного создания биогенератора из металлической бочки описан в этом ролике:

Если этот процесс не контролировать, устройство может просто взорваться. Считается более безопасным размещение биогенератора под землей, а не на поверхности. Следует обеспечить постоянный отбор полученного газа из емкости, чтобы нормализовать давление.

С газовой смесью также нужно обращаться осторожно. Это горючее вещество имеет резкий и неприятный запах, его вдыхание может быть опасным для здоровья людей.

Назначение и применение термогенератора

Устройства этого типа известны еще с середины прошлого века. Они позволяют преобразовать тепловую энергию в электрическую. Современный вариант термогенератора промышленного производства предназначен для установки на газовые котлы или дровяные печи длительного горения мощностью не менее 200 Вт.

Такой прибор позволяет в зимнее время, когда отопительные приборы работают непрерывно, получать около 150 кВт/ч электроэнергии в месяц.

Можно рассматривать его как дополнительный вариант в сочетании с солнечными батареями или как способ компенсировать частые отключения электроэнергии.

Существуют и походные модели теплогенераторов, которые могут перерабатывать тепловую энергию обычного костра. Их можно использовать во время строительства там, где нет электричества как альтернативу генератору, работающему на сжиженном топливе.

Выводы и полезное видео по теме

Ролик познакомит с наиболее популярными вариантами установок, работающих от альтернативных источников энергии:

Единственный значимый недостаток альтернативных способов получения энергии – высокая цена оборудования и монтажа. Высокотехнологичные разработки эффективны, удобны и недешевы. И все же вложения со временем окупятся. А для любителей мастерить всегда остаются варианты для самостоятельного изготовления.

Расскажите, что вы думаете относительно использования альтернативной энергии для дома? Делитесь своим мнением, участвуйте в обсуждениях и задавайте вопросы. Оставлять комментарии можно в форме, расположенной ниже.

10 альтернативных источников энергии, о которых вы ничего не знали

Тысячи людей каждый день проходят через турникеты при входе на железнодорожные станции. Сразу в нескольких исследовательских центрах мира появилась идея использовать поток людей в качестве инновационного генератора энергии. Японская компания East Japan Railway Company решила оснастить каждый турникет на железнодорожных станциях генераторами. Установка работает на вокзале в токийском районе Сибуя: в пол под турникетами встроены пьезоэлементы, которые производят электричество от давления и вибрации, которую они получают, когда люди наступают на них.

Другая технология «энерго-турникетов» уже используется в Китае и в Нидерландах. В этих странах инженеры решили использовать не эффект нажатия на пьезоэлементы, а эффект толкания ручек турникета или дверей-турникетов. Концепция голландской компании Boon Edam предполагает замену стандартных дверец при входе в торговые центры (которые обычно работают по системе фотоэлемента и сами начинают крутиться) на двери, которые посетитель должен толкать и таким образом производить электроэнергию.

В голландском центре Natuurcafe La Port такие двери-генераторы уже появились. Каждая из них производит около 4600 киловатт-час энергии в год, что на первый взгляд может показаться незначительным, но служит неплохим примером альтернативной технологии по выработке электричества.

Водоросли отапливают дома

Водоросли стали рассматриваться в качестве альтернативного источника энергии относительно недавно, но технология, по мнению экспертов, очень перспективна. Достаточно сказать, что с 1 гектара площади водной поверхности, занятой водорослями, в год можно получать 150 тысяч кубометров биогаза. Это приблизительно равно объёму газа, который выдает небольшая скважина, и достаточно для жизнедеятельности небольшого поселка.

Зеленые водоросли просты в содержании, быстро растут и представлены множеством видов, использующих энергию солнечного света для осуществления фотосинтеза. Всю биомассу, будь то сахара или жиры, можно превратить в биотопливо, чаще всего в биоэтанол и биодизельное топливо. Водоросли — идеальное эко-топливо, потому что растут в водной среде и не требуют земельных ресурсов, обладают высокой продуктивностью и не наносят ущерба окружающей среде.

По оценкам экономистов, к 2018 году глобальный оборот от переработки биомассы морских микроводорослей может составить около 100 млрд долларов. Уже существуют реализованные проекты на «водорослевом» топливе — например, 15-квартирный дом в немецком Гамбурге. Фасады дома покрыты 129 аквариумами с водорослями, служащими единственным источником энергии для отопления и кондиционирования здания, получившего название Bio Intelligent Quotient (BIQ) House.

«Лежачие полицейские» освещают улицы

Концепцию выработки электроэнергии при помощи так называемых «лежачих полицейских» начали реализовывать сначала в Великобритании, затем в Бахрейне, а скоро технология дойдет и до России. Все началось с того, что британский изобретатель Питер Хьюс создал «Генерирующую дорожную рампу» (Electro-Kinetic Road Ramp) для автомобильных дорог. Рампа представляет собой две металлические пластины, немного поднимающиеся над дорогой. Под пластинами заложен электрический генератор, который вырабатывает ток всякий раз, когда автомобиль проезжает через рампу. 

В зависимости от веса машины рампа может вырабатывать от 5 до 50 киловатт в течение времени, пока автомобиль проезжает рампу. Такие рампы в качестве аккумуляторов способны питать электричеством светофоры и подсвечиваемые дорожные знаки. В Великобритании технология работает уже в нескольких городах. Способ начал распространяться и на другие страны — например, на маленький Бахрейн.

Самое удивительное, что нечто подобное можно будет увидеть и в России. Студент из Тюмени Альберт Бранд предложил такое же решение по уличному освещению на форуме «ВУЗПромЭкспо». По подсчетам разработчика, в день по «лежачим полицейским» в его городе проезжает от 1000 до 1500 машин. За один «наезд» автомобиля по оборудованному электрогенеретором «лежачему полицейскому» будет вырабатываться около 20 ватт электроэнергии, не наносящей вред окружающей среде.

Больше, чем просто футбол

Разработанный группой выпускников Гарварда, основателей компании Uncharted Play, мяч Soccket может за полчаса игры в футбол сгенерировать электроэнергию, которой будет достаточно, чтобы несколько часов подпитывать LED-лампу. Soccket называют экологически чистой альтернативой небезопасным источникам энергии, которые нередко используются жителями малоразвитых стран.

Принцип аккумулирования энергии мячом Soccket довольно прост: кинетическая энергия, образуемая от удара по мячу, передается крошечному механизму, похожему на маятник, который приводит в движение генератор. Генератор производит электроэнергию, которая накапливается в аккумуляторе. Сохраненная энергия может быть использована для питания любого небольшого электроприбора — например, настольной лампы со светодиодом.

Выходная мощность Soccket составляет шесть ватт. Генерирующий энергию мяч уже завоевал признание мирового сообщества: получил множество наград, был высоко оценен организацией Clinton Global Initiative, а также получил хвалебные отзывы на известной конференции TED.

Скрытая энергия вулканов

Одна из главных разработок в освоении вулканической энергии принадлежит американским исследователям из компаний-инициаторов AltaRock Energy и Davenport Newberry Holdings. «Испытуемым» стал спящий вулкан в штате Орегон. Соленая вода закачивается глубоко в горные породы, температура которых благодаря распаду имеющихся в коре планеты радиоактивных элементов и самой горячей мантии Земли очень высока. При нагреве вода превращается в пар, который подается в турбину, вырабатывающую электроэнергию.

На данный момент существуют лишь две небольшие действующие электростанции подобного типа – во Франции и в Германии. Если американская технология заработает, то, по оценке Геологической службы США, геотермальная энергия потенциально способна обеспечить 50% необходимого стране электричества (сегодня ее вклад составляет лишь 0,3%).

Другой способ использования вулканов для получения энергии предложили в 2009 году исландские исследователи. Рядом с вулканическими недрами они обнаружили подземный резервуар воды с аномально высокой температурой. Супер-горячая вода находится где-то на границе между жидкостью и газом и существует только при определенных температуре и давлении.

Ученые могли генерировать нечто подобное в лаборатории, но оказалось, что такая вода встречается и в природе — в недрах земли. Считается, что из воды «критической температуры» можно извлечь в десять раз больше энергии, чем из воды, доведенной до кипения классическим образом.

Энергия из тепла человека

Принцип термоэлектрических генераторов, работающих на разнице температур, известен давно. Но лишь несколько лет назад технологии стали позволять использовать в качестве источника энергии тепло человеческого тела. Группа исследователей из Корейского ведущего научно-технического института (KAIST) разработала генератор, встроенный в гибкую стеклянную пластинку.

Такой гаджет позволит фитнес-браслетам подзаряжаться от тепла человеческой руки — например, в процессе бега, когда тело сильно нагревается и контрастирует с температурой окружающей среды. Корейский генератор размером 10 на 10 сантиметров может производить около 40 милливат энергии при температуре кожи в 31 градус Цельсия.

Похожую технологию взяла за основу молодая Энн Макосински, придумавшая фонарик, заряжающийся от разницы температур воздуха и человеческого тела. Эффект объясняется использованием четырех элементов Пельтье: их особенностью является способность вырабатывать электричество при нагреве с одной стороны и охлаждении с другой стороны.

В итоге фонарик Энн производит довольно яркий свет, но не требует батарей-акуумуляторов. Для его работы необходима лишь температурная разница всего в пять градусов между степенью нагрева ладони человека и температурой в комнате.

Шаги по «умной» тротуарной плитке

На любую точку одной из оживленных улиц приходится до 50000 шагов в день. Идея использовать пешеходный поток для полезного преобразования шагов в энергию была реализована в продукте, разработанном Лоуренсом Кемболл-Куком, директором британской Pavegen Systems Ltd. Инженер создал тротуарную плитку, генерирующую электроэнергию из кинетической энергии гуляющих пешеходов.

Устройство в инновационной плитке сделано из гибкого водонепроницаемого материала, который при нажатии прогибается примерно на пять миллиметров. Это, в свою очередь, создаёт энергию, которую механизм преобразует в электричество. Накопленные ватты либо сохраняются в литиевом полимерном аккумуляторе, либо сразу идут на освещение автобусных остановок, витрин магазинов и вывесок.

Сама плитка Pavegen считается абсолютно экологически чистой: ее корпус изготовлен из нержавеющей стали специального сорта и переработанного полимера с низким содержанием углерода. Верхняя поверхность изготовлена из использованных шин, благодаря этому плитка обладает прочностью и высокой устойчивостью к истиранию.

Во время проведения летней Олимпиады в Лондоне в 2012 году плитку установили на многих туристических улицах. За две недели удалось получить 20 миллионов джоулей энергии. Этого с избытком хватило для работы уличного освещения британской столицы.

Велосипед, заряжающий смартфоны

Чтобы подзарядить плеер, телефон или планшет, необязательно иметь под рукой розетку. Иногда достаточно лишь покрутить педали. Так, американская компания Cycle Atom выпустила в свет устройство, позволяющее заряжать внешний аккумулятор во время езды на велосипеде и впоследствии подзаряжать мобильные устройства. 

Продукт, названный Siva Cycle Atom, представляет собой легкий велосипедный генератор с литиевым аккумулятором, предназначенным для питания практически любых мобильных устройств, имеющих порт USB. Такой мини-генератор может быть установлен на большинстве обычных велосипедных рам в течение считанных минут. Сам аккумулятор легко снимается для последующей подзарядки гаджетов. Пользователь занимается спортом и крутит педали — а спустя пару часов его смартфон уже заряжен на 100 поцентов.

Компания Nokia в свою очередь тоже представила широкой публике гаджет, присоединяемый к велосипеду и позволяющий переводить кручение педалей в способ получегия экологически безопасной энергии. Комплект Nokia Bicycle Charger Kit имеет динамо-машину, небольшой электрический генератор, который использует энергию от вращения колес велосипеда и подзаряжает ей телефон через стандартный двухмиллиметровый разъем, распространенный в большинстве телефонов Nokia.

Польза от сточных вод

Любой крупный город ежедневно сбрасывает в открытые водоемы гигантское количество сточных вод, загрязняющих экосистему. Казалось бы, отравленная нечистотами вода уже никому не может пригодиться, но это не так — ученые открыли способ создавать на ее основе топливные элементы.

Одним из пионеров идеи стал профессор Университета штата Пенсильвания Брюс Логан. Общая концепция весьма сложная для понмания неспециалиста и построена на двух столпах — применении бактериальных топливных ячеек и установке так называемого обратного электродиализа. Бактерии окисляют органическое вещество в сточных водах и производят в данном процессе электроны, создавая электрический ток.

Для производства электричества может использоваться почти любой тип органического отходного материала – не только сточные воды, но и отходы животноводства, а также побочные продукты производств в виноделии, пивоварении и молочной промышленности. Что касается обратного электродиализа, то здесь работают электрогенераторы, разделенные мембранами на ячейки и извлекающие энергию из разницы в солености двух смешивающихся потоков жидкости.

«Бумажная» энергия

Японский производитель электроники Sony разработал и представил на Токийской выставке экологически чистых продуктов био-генератор, способный производить электроэнергию из мелко нарезанной бумаги. Суть процесса заключается в следующем: для выделения целлюлозы (это длинная цепь сахара глюкозы, которая находится в зеленых растениях) необходим гофрированный картон.

Цепь разрывается с помощью ферментов, а образовавшаяся от этого глюкоза подвергается обработке другой группой ферментов, с помощью которых высвобождаются ионы водорода и свободные электроны. Электроны направляются через внешнюю цепь для выработки электроэнергии. Предполагается, что подобная установка в ходе переработки одного листа бумаги размером 210 на 297 мм может выработать около 18 Вт в час (примерно столько же энергии вырабатывают 6 батареек AA).

Метод является экологически чистым: важным достоинством такой «батарейки» является отсутствие металлов и вредных химических соединений. Хотя на данный момент технология еще далека от коммерциализации: электричества вырабатывается достаточно мало – его хватает лишь на питание небольших портативных гаджетов.

Смотреть далее: 10 самых красивых ветряных электростанций мира

Подписывайтесь на наш канал в Telegram!t.me/recyclemagru
Page 2

В рамках своего проекта Vert Design Эндрю Симпсон из Австралии создает изделия из стекла. В своих работах он использует простые формы, его разработки находятся в тесной связи с человеком и снижают негативное воздействие на планету. Его девиз: элегантность – не новинка. Элегантная ваза выглядит на первый взгляд обычно, однако создана она из переработанной солнечной батареи. 

Многофункциональные деревянные бруски

Дизайнер Генри Уилсон создает крепкие каркасы из брусков древесины стандартных размеров.  Многофункциональные столярные системы позволяют объединить стандартизированные размеры брусков в 4 различные конфигурации в форме буквы А. Простота переработки и использования таких конструкций содержит в себе безграничный потенциал. Крепежи можно применять как в конструкции обычных столов и скамеек, так и в постройке временного жилья. 

Бумажные горшки

Проект Ett la Benn – это на 100% биоразлагаемые горшки и светильники. Их создают из бумаги, применяя особую технику сушки целлюлозы воздухом. Таким образом, процесс производства работ приближается к практически нулевым вредным выбросам в атмосферу. 

Посуда из пластиковых пакетов

Различные сосуды марки Plastic Fantastic: стаканы, чашки и миски – изготовлены из пластиковых пакетов. Созданные горшочки не пропускают воду, поэтому в них можно выращивать цветы. 

Новая мебель – из старой

Работы Piet Hein Eek выполнены с неизменным качеством ручной работы. Но, несмотря на то, что это ручная работа, дизайнер производит ее в масштабах известных брендов. Он преображает подержанные вещи или использует их в качестве материала для создания новых предметов. Piet Hein Eek пытается создавать предметы, которые в будущем не будут зависеть от влияния моды. Он признается, что у него врожденное отвращение к массовому потреблению. 

Стильная метла вместо пылесоса

Дизайнеры из Швейцарии, объединенные под брендом Postfossil, создают объекты для дома в контексте проблемы ограниченности ресурсов. Использование экологически чистых и возобновляемые ресурсов является основой работы дизайнеров. Например, эта метла изготовлена из белой породы дерева и достаточно привлекательна, чтобы ее не прятали в шкафу, а с удовольствием использовали вместо пылесоса, не затрачивая при этом электроэнергию. 

Абажур из вторсырья

Tamara Maynes придумывает дизайн того или иного предмета и выкладывает инструкции по его созданию в сеть или печатает их в журналах и книгах. Таким образом каждый может создать дизайнерский объект у себя дома, используя ненужные вещи или отходы. Скачать инструкцию по созданию такого абажура можно здесь. 

Бижутерия из бутылок от шампуня

Материалом для бижутерии, созданных под брендом Mark Vaarwerk, служит то что мы каждый день выбрасываем в урну. К примеру, брошка на фото сделана из бутылки из-под шампуня. Узнать об этом можно только по названию брошки – Wella Whirl: точно такое же название имеет марка этого шампуня.

Вот как происходит процесс создания ювелирных изделий: Марк помещает полистирол в воздухонепроницаемый контейнер и медленно опускает его в пары ацетона. Ацетон в этом случае действует как растворитель. В итоге получаются полистирольные шарики, которые и являются сырьем для изготовления украшений. 

Вазы из резины на растительной основе

Работы дизайнеров группы FormaFantasma созданы из  резины на растительной основе и продуктов животного происхождения без добавления нефтесодержащих веществ. Элементы флоры в формах объектов подчеркивают растительное и животное происхождение полимеров, в то время как цветовая палитра базируется на натуральных янтарных тонах в комбинации с традиционными материалами: деревом, керамикой и металлами. 

Керамические краски

Кирсти Ван Ноорт из Голландии побывала на 14 старых металлических рудниках в Корнуолле, где раньше добывали медь и олово. До 90-х годов там работали десятки подобных шахт,  но потом цены на материалы упали, и все шахты закрылись. Теперь там можно увидеть пейзажи с остатками шахт и грудами сырья, отвергнутыми промышленностью. Кирсти  взяла оттуда образцы почвы: сейчас цветовая палитра керамических красок состоит из 120 цветов. Эти краски подходят для фарфора, фаянса и керамики. Необходимо только обжечь материал, и цвета изменятся в ходе этого процесса. 

Мебель из старых газет

Компания дизайнеров Newspaper Wood решила повернуть вспять процесс изготовления бумаги из дерева – они делают деревья из бумаги. Причем получившиеся объекты действительно напоминают дерево: в их структуре даже можно разглядеть «вековые кольца».  Этот достигается путем спрессовывания газетных листов, смазанных клеем.  По характеристикам «газетные деревья» тоже близки к своим собратьям. Их можно пилить, сверлить и обрабатывать наждачной бумагой. 

Смотреть далее: 10 дизайнерских энергосберегающих ламп

Подписывайтесь на наш канал в Telegram!t.me/recyclemagru
Page 3
11 октября 2014, 18:00

Автор: Recycle 12988

Подписывайтесь на наш канал в Telegram!t.me/recyclemagru
Page 4

«Свинка Пеппа» — британский мультсериал для дошкольников. В этой серии выясняется, что дома у семейства свиней стоят разноцветные баки для раздельного сбора мусора, а рассортированные отходы они отвозят на станцию по переработке. Вот только от личного транспорта Пеппа и её родня отказаться пока не готовы.

 

Фиксики — Батарейки

Отечественный мультсериал о том, как устроен мир вокруг. Серия начинается с попыток удобрить горшок с ростком лимонного дерева батарейками («Знаешь, сколько в них энергии!»), а заканчивается спешной эвакуацией лимона и отправкой батареек в переработку с подробным рассказом о том, как, почему и зачем.

Животные спасают планету

Подборка коротких мультипликационных роликов от телеканала Discovery (на английском, но с русскими субтитрами). Белый медведь и энергосберегающие лампы, осьминог и пластиковые пакеты, бегемот и экономия воды и другие поучительные сюжеты длительностью не более минуты каждый.

Going Green

Мультфильм о светофоре, который решил стать зелёным — во всех смыслах. Помимо забавного сюжета здесь есть и серьёзный подтекст. Предложите, например, ребёнку посчитать, сколько пешеходов проходит через перекрёсток, на котором установлен светофор, а потом обсудите результаты.

Energy, let's save it!

Мультфильм в стиле ретро от официального Youtube-канала Евросоюза рассказывает об энергосберегающих лампочках, терморегуляторах отопления и других способах экономии энергии и воды — вплоть до неожиданно романтических.

Оззи Озон

Говорящая молекула Оззи Озон — маскот Программы ООН по окружающей среде (ЮНЕП), у которого есть даже собственный сайт (www.ozzyozone.org; осторожно, громкая музыка без предупреждения). В мультфильме Оззи, выбитый из строя нападением парниковых газов, отправляется в путешествие с альбатросом Альбертой, чтобы узнать, как предотвратить разрушение озонового слоя.

Это совсем не про это

Известный советский сатирический мульт идёт по классу мультфильмов для взрослых, но вполне достоин того, чтобы обсудить его с ребёнком.

Don’t Waste Your Waste

Видеоролик на английском вполне может стать подспорьем для девятиклассника, готовящегося к сдаче «топиков», а заодно внятно объяснить, что такое reuse, recycling и energy recovery.

«Как мусор уничтожил мир»

«Что там мерцает?» — «Это туманность Консервных банок, сынок»: ироничный мультфильм о том, что планету убивают не только добыча нефти и токсичные отходы производства. Нерациональное потребление — простой и доступный каждому способ приблизить апокалипсис.

Man

Мультфильм-притча о том, как «с южных гор до северных морей Человек проходит как хозяин», оставляя за собой трупы, горы мусора и выжженную землю. Финал у этой истории закономерно печальный, хотя и не без сарказма.

Смотреть далее: 30 котиков из Instagram в экологичных бумажных пакетах

Подписывайтесь на наш канал в Telegram!t.me/recyclemagru


Смотрите также